
Version: v1.0.4 (9364dd6) 1



The Art of Monitoring

James Turnbull

March 25, 2019

Version: v1.0.4 (9364dd6)

Website: The Art of Monitoring

https://www.artofmonitoring.com


Some rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,

mechanical or photocopying, recording, or otherwise, for commercial purposes
without the prior permission of the publisher.

This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of

this license, visit here.
© Copyright 2018 - James Turnbull <james@lovedthanlost.net>

http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:james+aom@lovedthanlost.net


Contents

Page

Chapter 3 Managing events and metrics with Riemann 1
Introducing Riemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Riemann architecture and implementation . . . . . . . . . . . . . . . 3
Installing Riemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Configuring Riemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Learning some Clojure . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Riemann’s base configuration . . . . . . . . . . . . . . . . . . . . . . . 13
Events, streams, and the index . . . . . . . . . . . . . . . . . . . . . . 19
Configuring events, streams, and the index . . . . . . . . . . . . . . . 22
Sending our first event to Riemann . . . . . . . . . . . . . . . . . . . . 27
Creating our first Riemann monitoring check . . . . . . . . . . . . . 30
An interlude into Riemann filtering . . . . . . . . . . . . . . . . . . . 31

Connecting Riemann servers . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Configuring the upstream Riemann servers . . . . . . . . . . . . . . . 37
Configuring the downstream Riemann server . . . . . . . . . . . . . 41
Enabling the send of our Riemann events downstream . . . . . . . . 42

Alerting on the upstream Riemann servers . . . . . . . . . . . . . . . . . . 44
Throttling Riemann events . . . . . . . . . . . . . . . . . . . . . . . . . 54
Rolling up Riemann events . . . . . . . . . . . . . . . . . . . . . . . . 54
Alternatives to email notifications . . . . . . . . . . . . . . . . . . . . 55

Testing your Riemann configuration . . . . . . . . . . . . . . . . . . . . . 56
Validating Riemann configuration . . . . . . . . . . . . . . . . . . . . . . . 60

i



Contents

Performance, scaling, and making Riemann highly available . . . . . . 61
Alternatives to Riemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Appendix A An Introduction to Clojure and Functional Programming 66
A brief introduction to Clojure . . . . . . . . . . . . . . . . . . . . . . . . . 68
Installing Leiningen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Clojure syntax and types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Clojure functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Creating our own functions . . . . . . . . . . . . . . . . . . . . . . . . 84
Creating variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Creating named functions . . . . . . . . . . . . . . . . . . . . . . . . . 88

Learning more Clojure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

List of Figures 92

List of Listings 97

Index 98

Version: v1.0.4 (9364dd6) ii



Chapter 3

Managing events and metrics with
Riemann

In Chapter 2 we talked about events, metrics, and logs, and how we’re going to use
them. In this chapter we’re going to build the base of our monitoring framework:
the routing engine we described that will input and process those events, metrics,
and logs.
Our design for an event router is:

Figure 3.1: Event Routing

With this design we want our routing engine to:

1



Chapter 3: Managing events and metrics with Riemann

• Receive our events and metrics (we’ll talk more about logs in Chapter 8)
including scaling as our environment grows.

• Maintain sufficient state to allow us to do event matching; provide context
for notifications and for checks based on trending.

• Munge events including extracting metrics from events.
• Categorize and route data to be stored, graphed, alerted on, or sent to any
other potential destinations.

To achieve these objectives we’re going to look at a tool called Riemann. Riemann
is an event-based tool for monitoring distributed systems. It works in a push
model, receiving events rather than polling for them. We’re going to use Riemann
as our routing engine. Our hosts, services, and applications will send their events
into Riemann, and Riemann will make the necessary decisions about those events.

Introducing Riemann
If only I had the theorems! Then I should find the proofs easily enough.
— Bernard Riemann
So why Riemann? Riemann is a monitoring tool that aggregates events from hosts
and applications and can feed them into a stream processing language to be manip-
ulated, summarized, or actioned. The idea behind Riemann is to make monitoring
and measuring events an easy default.
Riemann can also track the state of incoming events and allows us to build checks
that take advantage of sequences or combinations of events. It provides notifica-
tions, the ability to send events onto other services and into storage, and a variety
of other integrations.
Overall, Riemann has functionality that addresses all of our objectives. It is fast
and highly configurable. Throughput depends on what you do with each event,

Version: v1.0.4 (9364dd6) 2

http://riemann.io
http://riemann.io/


Chapter 3: Managing events and metrics with Riemann

but stock Riemann on commodity x86 hardware can handle millions of events per
second at sub-millisecond latencies.
Riemann is open source and licensed with the Eclipse Public license. It is primarily
authored by Kyle Kingsbury aka Aphyr. Riemann is written in Clojure and runs
on top of the JVM.

Riemann architecture and implementation
In the Introduction we talked a little about the topology of our Example.com en-
vironment with Production A, Production B, and Mission Control environments.
We’re going to deploy Riemann servers in each environment. We’re also going to
deploy downstream servers in the Mission Control environment to allow us to roll
up events and “monitor the monitors.” To do this we’ll send Riemann’s own status
events downstream, and we’ll setup notifications if these events stop flowing.
In Chapter 4 we’re going to pair Riemann with Graphite, a real-time time-series
data graphing engine, that can store and graph metrics generated from events.
We’ll also introduce Grafana, a tool to visualize the data we’re collecting.
In summary we will:

• Install Riemann servers in the Production A and Production B environments.
• Install Graphite and Grafana servers in the Production A and Production B
environments (coming up in Chapter 4).

• Configure the downstream Riemann, Graphite, and Grafana servers in our
Mission Control environment.

Version: v1.0.4 (9364dd6) 3

https://github.com/riemann/riemann
https://github.com/riemann/riemann/blob/master/LICENSE
https://aphyr.com/
https://en.wikipedia.org/wiki/Java_virtual_machine


Chapter 3: Managing events and metrics with Riemann

Figure 3.2: Metrics Architecture

Let’s take a look at installing Riemann now.

Installing Riemann
We’re going to install Riemann onto three hosts:

• An Ubuntu 14.04 host in Production A with a hostname of riemanna.
example.com and an IP address of 10.0.0.110

• A Red Hat Enterprise Linux (RHEL) 7.0 host in Production B with a hostname
of riemannb.example.com and an IP address of 10.0.0.120.

Version: v1.0.4 (9364dd6) 4



Chapter 3: Managing events and metrics with Riemann

• An Ubuntu 14.04 host in Mission Control with a hostname of riemannmc.
example.com and an IP address of 10.0.0.100.

 NOTE Here, and throughout the book, we’re going to assume you’ve con-
figured DNS and local host resolution to find and resolve these hosts.

We’re going to conduct a manual installation of the required prerequisites and
packages to give you an understanding of how Riemann works, but in the real
world we’d use a configuration management tool.

Installing Riemann on Ubuntu

We’re going to do our first Riemann installation on the riemanna.example.com
host which is an Ubuntu 14.04 host.

Prerequisites for Ubuntu

First, we’ll need Java to run Riemann itself. For Java we’re going to use the default
OpenJDK available on Ubuntu.

Listing 3.1: Installing Java on Ubuntu

$ sudo apt-get -y install default-jre

Then let’s check Java is installed correctly.

Version: v1.0.4 (9364dd6) 5



Chapter 3: Managing events and metrics with Riemann

Listing 3.2: Checking Java is installed on Ubuntu

$ java -version
java version "1.7.0_65"
OpenJDK Runtime Environment (IcedTea 2.5.3) (7u71-2.5.3-0ubuntu0
.14.04.1)
OpenJDK 64-Bit Server VM (build 24.65-b04, mixed mode)

Installing the Riemann package on Ubuntu

Now we’re going to install Riemann itself. We’re going to use the Riemann
project’s own DEB packages. Also available are RPM packages and tarballs. I am
going to do a manual install so you can see the steps involved, but you could just
as easily use the configuration management content above.
Let’s grab the DEB package of the current release. You should check the Riemann
site for the latest version and update this command to get that package.

Listing 3.3: Fetching the Riemann DEB package

$ wget https://aphyr.com/riemann/riemann_0.2.11_all.deb

And then install it via the dpkg command.

Listing 3.4: Installing the Riemann package on Ubuntu

$ sudo dpkg -i riemann_0.2.11_all.deb

The Riemann DEB package installs the riemann binary and supporting files, service
management, and a default configuration file.

Version: v1.0.4 (9364dd6) 6

https://aphyr.com/riemann/riemann_0.2.11_all.deb
https://aphyr.com/riemann/riemann_0.2.11_all.deb


Chapter 3: Managing events and metrics with Riemann

We’d then repeat this installation for the second Ubuntu host, riemannmc.example
.com.

Installing Riemann on Red Hat

We’re going to do our second installation on the riemannb.example.com host,
which is a Red Hat Enterprise Linux (RHEL) 7 host.

Prerequisites for Red Hat

Again we need to have Java installed. Let’s install the package we require.

Listing 3.5: Installing Java and prerequisites on RHEL

$ sudo yum install -y java-1.7.0-openjdk

 TIP On newer Red Hat and family versions the yum command has been re-
placed with the dnf command. The syntax is otherwise unchanged.

Here we’ve installed Java. Let’s now test Java on this host.

Listing 3.6: Checking Java is installed on Red Hat

$ java -version
java version "1.7.0_75"
OpenJDK Runtime Environment (rhel-2.5.4.2.el7_0-x86_64 u75-b13)
OpenJDK 64-Bit Server VM (build 24.75-b04, mixed mode)

Version: v1.0.4 (9364dd6) 7



Chapter 3: Managing events and metrics with Riemann

Installing the Riemann package on Red Hat

Now we’re going to install Riemann itself. We’re going to use the Riemann
project’s own RPM packages. Again we’re going to do a manual install but we
could easily use configuration management.
Let’s grab the RPM package of the current release. Check the Riemann site for the
latest version and update this command to get that package.

Listing 3.7: Fetching the Riemann RPM package

$ wget https://aphyr.com/riemann/riemann-0.2.11-1.noarch.rpm

Then install it via the rpm command.

Listing 3.8: Installing the Riemann package on RHEL

$ sudo rpm -Uvh riemann-0.2.11-1.noarch.rpm

The Riemann RPM package installs the riemann binary and supporting files, ser-
vice management, and a default configuration file.

Installing Riemann via configuration management

You could also install Riemann via a variety of configuration management tools
like Puppet or Chef or via Docker or Vagrant.
You can find a Chef cookbook for Riemann at:

• https://github.com/hudl/riemann-cookbook

You can find a Puppet module for Riemann at:

Version: v1.0.4 (9364dd6) 8

https://aphyr.com/riemann/riemann-0.2.11-1.noarch.rpm
https://aphyr.com/riemann/riemann-0.2.11-1.noarch.rpm
https://github.com/hudl/riemann-cookbook


Chapter 3: Managing events and metrics with Riemann

• https://forge.puppetlabs.com/garethr/riemann

You can find an Ansible role for Riemann at:

• https://github.com/dhruvbansal/riemann-server-ansible-role

You can find Docker images for Riemann at:

• https://hub.docker.com/search/?q=riemann

You can find a Vagrant configuration for Riemann at:

• https://github.com/garethr/riemann-vagrant

Running Riemann

Now that we’ve installed Riemann on our hosts, we’ll run it. Riemann can run
interactively via the command line or as a daemon. If we’re running it as a daemon
we use the service management commands:

Listing 3.9: Starting and stopping Riemann

$ sudo service riemann start
$ sudo service riemann stop
. . .

We can also run Riemann interactively using the riemann binary. To do this we
need to specify a configuration file. Conveniently the installation process has
added one at /etc/riemann/riemann.config.

Version: v1.0.4 (9364dd6) 9

https://forge.puppetlabs.com/garethr/riemann
https://github.com/dhruvbansal/riemann-server-ansible-role
https://hub.docker.com/search/?q=riemann
https://github.com/garethr/riemann-vagrant


Chapter 3: Managing events and metrics with Riemann

Listing 3.10: Running Riemann interactively

$ sudo riemann /etc/riemann/riemann.config
loading bin
INFO [2014-12-21 18:13:21,841] main - riemann.bin - PID 18754
INFO [2014-12-21 18:13:22,056] clojure-agent-send-off-pool-2 -
riemann.transport.websockets - Websockets server 127.0.0.1 5556
online
INFO [2014-12-21 18:13:22,091] clojure-agent-send-off-pool-4 -
riemann.transport.tcp - TCP server 127.0.0.1 5555 online
INFO [2014-12-21 18:13:22,099] clojure-agent-send-off-pool-3 -
riemann.transport.udp - UDP server 127.0.0.1 5555 16384 online
INFO [2014-12-21 18:13:22,102] main - riemann.core - Hyperspace
core online

We see that Riemann has been started and a couple of servers have also been
started: a WebSockets server on port 5556, and TCP and UDP servers on port
5555. By default Riemann binds to localhost.

 NOTE Don’t use UDP to send events to Riemann. UDP has no guarantee
of delivery, ordering, or duplicate protection. You will lose events and data.

The default configuration logs to /var/log/riemann/riemann.log and you can
also follow the daemon’s activity there.
You can stop the interactive Riemann server with a Ctrl-C on the command line.

 NOTE The Riemann packages also add a riemann user and group that
Riemann runs by default.

Version: v1.0.4 (9364dd6) 10



Chapter 3: Managing events and metrics with Riemann

Installing Riemann’s supporting tools

Lastly, let’s install a final supporting piece on all our Riemann hosts: the Riemann
tools.
The Riemann tools are a collection of small programs that can be used to submit
events to Riemann. They include tools for monitoring web services, local hosts,
applications, and databases. We’re going to use these tools for some local testing.
You can see the repository for the Riemann tool on GitHub here.

 NOTE In Chapter 5 we’ll explore host monitoring using collectd.

To install the tools we need to install Ruby and a compiler on our host. We can
remove it afterward if we’re concerned it’s a security risk on the host. On Ubuntu
we would install:

Listing 3.11: Installing supporting tools prerequisites on Ubuntu

$ sudo apt-get -y install ruby ruby-dev build-essential zlib1g-
dev

Or on Red Hat distributions we would install:

Listing 3.12: Installing supporting tools prerequisites on RHEL

$ sudo yum install -y ruby ruby-devel gcc libxml2-devel

We’re going to install the supporting tools via Ruby Gems.

Version: v1.0.4 (9364dd6) 11

https://github.com/riemann/riemann-tools


Chapter 3: Managing events and metrics with Riemann

Listing 3.13: Installing Riemann’s supporting tools

$ sudo gem install --no-ri --no-rdoc riemann-tools

 TIP After installation you can remove the build tools we installed if required.
Don’t remove Ruby—you’ll need that to run the supporting tools.

There’s also a Riemann dashboard available that is provided by the riemann-dash
gem. It’s basic and you can find its source code on GitHub. We’re not going to use
it in the book, but it’s useful for creating graphs and viewing events locally on the
Riemann host—for example, when quickly doing diagnostics or checking out state
and status. You can find out more in the Riemann Dashboard documentation.

Configuring Riemann
Riemann is configured using a Clojure-based domain-specific language, or DSL,
configuration file. This means your configuration file is actually processed as a
Clojure program. To process events and send notifications and metrics you’ll be
writing Clojure. Don’t panic—you won’t need to become a full-fledged Clojure
developer to use Riemann. We’ll teach you what you need to know. Riemann
also comes with a lot of helpers and shortcuts that make it easier to write Clojure
to do what we need to process our events.

Version: v1.0.4 (9364dd6) 12

https://github.com/riemann/riemann-dash
http://riemann.io/dashboard.html


Chapter 3: Managing events and metrics with Riemann

Learning some Clojure
Your first step in learning how to configure Riemann is learning a little bit of
Clojure, just enough to get started and build our first few monitoring checks. Later
in the book we’ll introduce you to further concepts and syntax that you’ll find
useful. To start learning, please flip over to Appendix A - An Introduction to
Clojure and Functional Programming at the back of the book. Alternatively,
Kyle Kingsbury, the author of Riemann, has written an excellent series called
Clojure from the ground up that should greatly help you understand Clojure.

 TIP We strongly recommend you read the appendix before continuing. It’ll
help you understand how Riemann’s configuration DSL works and help you get
started using it.

Riemann’s base configuration
Now that we’ve installed Riemann let’s look at how to configure it. The package
installation installs a default configuration file at /etc/riemann/riemann.config.
We’re going to replace that file with a new initial configuration.
To do this edit the /etc/riemann/riemann.config file and add the following con-
tent.

Version: v1.0.4 (9364dd6) 13

https://aphyr.com/posts/301-clojure-from-the-ground-up-welcome


Chapter 3: Managing events and metrics with Riemann

Listing 3.14: New /etc/riemann/riemann.config configuration file

(logging/init {:file "/var/log/riemann/riemann.log"})

(let [host "127.0.0.1"]
(tcp-server {:host host})
(udp-server {:host host})
(ws-server {:host host}))

(periodically-expire 5)

(let [index (index)]
(streams
(default :ttl 60
index

#(info %))))

 TIP Any line or string prefixed with a ; is a comment.

We see the file is broken into a few stanzas. The first stanza sets up Riemann’s
logging to a file: /var/log/riemann/riemann.log.

Listing 3.15: Riemann logging stanza

(logging/init {:file "/var/log/riemann/riemann.log"})

 TIP I strongly recommend you manage your Riemann configuration file with
a configuration management tool and/or version control. Also useful is if your

Version: v1.0.4 (9364dd6) 14



Chapter 3: Managing events and metrics with Riemann

editor supports syntax highlighting and validation. Clojure uses a lot of braces,
brackets, and parentheses and ensuring they are in order and matched can be
tricky.

In this case we’re calling a function, logging/init. We’ve specified the names-
pace of the function, logging, and the name of the function, init, and then any
subsequent arguments. Namespaces are a way of organizing code in Clojure and
we’ll talk more about them later in this chapter. In this case our argument is a map.
Our map contains any options we want to pass to our logging/init function.
Inside our map we’ve specified a single option, :file, with a value of /var/log
/riemann/riemann.log. The :file option is a Clojure keyword. A keyword is a
label, much like a Ruby symbol, and it’s commonly used inside collections like
maps to mark the key in a key/value pair.
In summary we’re calling the logging/init function and passing it a map, in this
case containing only one option: the name of the file in which to write our logs.
The second stanza controls Riemann’s interfaces. Riemann generally listens on
TCP, UDP, and aWebSockets interface. By default, the TCP, UDP, andWebSockets
interfaces are bound to the 127.0.0.1 or localhost.

• TCP is on port 5555.
• UDP is on port 5555.
• WebSockets is on port 5556.

We see that the definition of our interface configuration is inside a stanza starting
with let. We’re going to see let quite a bit in our configuration. The let ex-
pression creates lexically scoped immutable aliases for values. Or, in more simple
terms, it defines a meaning for a symbol or symbols within a specific expression.
What does this mean? Let’s look at our interface configuration.

Version: v1.0.4 (9364dd6) 15

http://riemann.io/api/riemann.logging.html#var-init
https://aphyr.com/posts/302-clojure-from-the-ground-up-basic-types
https://aphyr.com/posts/302-clojure-from-the-ground-up-basic-types
https://aphyr.com/posts/303-clojure-from-the-ground-up-functions


Chapter 3: Managing events and metrics with Riemann

Listing 3.16: The let form

(let [host "127.0.0.1"]
(tcp-server {:host host})
(udp-server {:host host})
(ws-server {:host host}))

The let expression takes a vector of one or more bindings. Bindings are pairs of
symbols and values that are bound for that expression. Symbols are pointers to
values—for example, the symbol host has a value of 127.0.0.1. The binding is
only valid locally to our let expression. This is useful because it allows you to do
things like override existing values of symbols inside the current expression.
We use these bindings in the subsequent expressions. In our interface example
we’re saying:
“Let the symbol host be 127.0.0.1 and then call the tcp-server, udp-server, and
ws-server functions with that symbol as the value of the :host option.”
This sets the host interface of the TCP, UDP, and WebSockets servers to 127.0.0.1.
A let binding is lexically scoped, i.e., limited in scope to the expression itself.
Outside of this expression the host symbol would be undefined. The host symbol
is also immutable inside the expression in which it is defined. You cannot change
the value of host inside this expression. This is an excellent example of why
functional programming is useful. Nothing inside the expression can change the
value (state) of host, which ensures that every time the expression is evaluated
the same result will be achieved.
The let expression is useful for configuring Riemann because it is simple, readable,
and—because of the clear scope and immutable state—reloads cleanly when we
want to change configuration.
For our purposes having Riemann bound to only the localhost isn’t overly useful.
Let’s make a quick change here to bind these servers to all available interfaces.

Version: v1.0.4 (9364dd6) 16

https://aphyr.com/posts/302-clojure-from-the-ground-up-basic-types
https://aphyr.com/posts/302-clojure-from-the-ground-up-basic-types
https://aphyr.com/posts/302-clojure-from-the-ground-up-basic-types


Chapter 3: Managing events and metrics with Riemann

Listing 3.17: Exposing Riemann on all interfaces

(let [host "0.0.0.0"]
(tcp-server {:host host})
(udp-server {:host host})
(ws-server {:host host}))

We’ve updated the value of the host symbol from 127.0.0.1 to 0.0.0.0. This
means if one of your interfaces is on the Internet then your Riemann server is now
on the Internet and accessible to everyone. If you need more security you can also
configure Riemann with TLS.
We could also adjust the ports being used by Riemann by adding the :port argu-
ment to our map.

Listing 3.18: Changing the Riemann port

(let [host "0.0.0.0"
tcp-port 5555]

(tcp-server {:host host :port tcp-port}))

In addition to the other servers, Riemann also has a built-in REPL server you can
use to test your Riemann configuration. You can add it to the servers you’ve en-
abled by adding (repl-server {:host host}) to your server configuration. You
may want to bind it to the localhost as (repl-server {:host "127.0.0.1"}) to
prevent inappropriate access. You can connect to it using the lein binary from
inside a checkout of the Riemann source code.

 TIP We talk about REPL servers in Appendix A. They are useful for testing
with Riemann and Clojure.

Version: v1.0.4 (9364dd6) 17

http://riemann.io/howto.html#securing-traffic-using-tls


Chapter 3: Managing events and metrics with Riemann

Listing 3.19: Connecting to the Riemann REPL server

$ git clone git://github.com/riemann/riemann.git
$ cd riemann
$ lein repl :connect 127.0.0.1:5557

To make these changes we need to reload or restart Riemann. If we’re reloading
Riemann then it will respond to SIGHUP, using kill -HUP <Riemann PID> or from
inside the REPL server.

Listing 3.20: SIGHUP from the Riemann REPL server

user=> (riemann.bin/reload!)

We strongly recommend using SIGHUP to reload the configuration. Riemann has
hot loading of configuration and in most cases this will allow your event flow
to be less impacted. You’ll then see a message about reloading the config in the
Riemann log file. You could also use the service management tools on your host.

Listing 3.21: Restarting Riemann

$ sudo service riemann reload

 TIP If you make a configuration mistake or a syntax error then Riemann will
continue running with the old config and won’t apply the new one. It’ll also log
an error message detailing the issue so you can fix it up.

Version: v1.0.4 (9364dd6) 18



Chapter 3: Managing events and metrics with Riemann

The next stanza configures indexing and streams. Both of these topics need special
attention because they are at the heart of what makes Riemann so powerful. Let’s
look at each of these concepts now.

Events, streams, and the index
Riemann is an event processing engine. There are three concepts we need to
understand if we’re going to make use of Riemann: events, streams, and the index.
Let’s start by looking at events.

Events

The event is the base construct of Riemann. Events flow into Riemann and can
be processed, counted, collected, manipulated, or exported to other systems. A
Riemann event is a struct that Riemann treats as an immutable map.
Here’s an example of a Riemann event.

Listing 3.22: Example Riemann event

{:host riemanna, :service riemann streams rate, :state ok,
:description nil, :metric 0.0, :tags [riemann],
:time 355740372471/250, :ttl 20}

Each event generally contains the following fields.

Field Description
host A hostname, e.g. riemanna.
service The service, e.g. riemann streams rate.

Version: v1.0.4 (9364dd6) 19

https://en.wikipedia.org/wiki/Struct


Chapter 3: Managing events and metrics with Riemann

Field Description
state A string describing state, e.g. ok, warning, critical.
time The time of the event in Unix epoch seconds.
description Freeform description of the event.
tags Freeform list of tags.
metric A number associated with this event, e.g. the number of reqs/sec.
ttl A floating-point time in seconds, for which this event is valid.

A Riemann event can also be supplemented with optional custom fields. You can
configure additional fields when you create the event or you can add additional
fields to the event as it is being processed—for example, you could add a field
containing a summary or derived metrics to an event.
Inside our Riemann configuration we’ll generally refer to an event field using key-
words. Remember that keywords are often used to identify the key in a key/value
pair in a map and that our event is an immutable map. We identify keywords by
their : prefix. So, the host field would be referenced as :host.
The next layer above events are streams.

Streams

Each arriving event is added to one or more streams. You define streams in the
(streams section of your Riemann configuration. Streams are functions you can
pass events to for aggregation, modification, or escalation. Streams can also have
child streams that they can pass events to. This allows for filtering or partitioning
of the event stream, such as by only selecting events from specific hosts or services.

Version: v1.0.4 (9364dd6) 20



Chapter 3: Managing events and metrics with Riemann

Listing 3.23: Child streams example

(streams
(childstream
(childstream)))

You can think of streams like plumbing in the real world. Events enter the plumb-
ing system, flow through pipes and tunnels, collect in tanks and dams, and are
filtered by grates and drains.
You can have as many streams as you like and Riemann provides a powerful stream
processing language that allows you to select the events relevant to a specific
stream. For example, you could select events from a specific host or service that
meets some other criteria.
Like your plumbing though, streams are designed for events to flow through them
and for limited or no state to be retained. For many purposes, however, we do
need to retain some state. To manage this state Riemann has the index.

The Riemann index

The index is a table of the current state of all services being tracked by Riemann.
You tell Riemann to specifically index events that you wish to track. Riemann
creates a new service for each indexed event by mapping its :host and :service
fields. The index then retains the most recent event for that service. You can think
about the index as Riemann’s worldview and source of truth for state. You can
query the index from streams or even from external services.
We saw in our event definition above that each event can contain a TTL or Time-
to-Live field. This field measures the amount of time for which an event is valid.
Events in the index longer than their TTL are expired and deleted. For each expi-
ration a new event is created for the indexed service with its :state field set to

Version: v1.0.4 (9364dd6) 21



Chapter 3: Managing events and metrics with Riemann

expired. The new event is then injected back into the stream.
Let’s take a closer look at this. Here’s an example event:

Listing 3.24: Example Apache Riemann event

{:host www, :service apache connections, :state nil, :
description nil, :metric 100.0, :tags [www], :time 466741572492,
:ttl 20}

It’s from a host called www and is for a service called apache connections. It has
a TTL of 20 seconds. If we index this event then Riemann will create a service by
mapping www and apache connections. If events keep coming into Riemann then
the index will track the latest event from this service. If the events stop flowing
then sometime after 20 seconds have passed the event will be expired in the index.
A new event will be generated for this service with a :state of expired, like so:

Listing 3.25: Example expired Apache Riemann event

{:host www, :service apache connections, :state expired, :
description nil, :metric 100.0, :time 466741573456, :ttl 20}

This event will then be injected back into streams where we can make use of it.
This behavior is going to be pretty useful to us as we use Riemann for monitoring
our applications and services. Instead of polling or checking for failed services,
we’ll monitor for services whose events have expired.

Configuring events, streams, and the index
Now that we know a bit more about Riemann let’s take another look at the sec-
ond half of our default configuration which contains our streams and an index

Version: v1.0.4 (9364dd6) 22



Chapter 3: Managing events and metrics with Riemann

configuration.

Listing 3.26: More of our default riemann.config configuration file

(periodically-expire 5)

(let [index (index)]
(streams
(default :ttl 60

index

#(info %))))

The first function in our configuration, (periodically-expire 5), removes any
events that have expired from the index. It’s an event reaper that runs every five
seconds and acts on any events with expired TTL by deleting them from the index.
For every event reaped a new event is created for that indexed host and service.
That event is then put onto the stream with a :state of expired.
By default, Riemann copies the :host and :service fields to the expired event.
You can control what other fields from events are also copied onto expired events
by passing the :keep-keys option to the periodically-expire function. For ex-
ample, we’d like to add the :tags field to expired events.

Listing 3.27: Copying more keys into expired events

(periodically-expire 5 {:keep-keys [:host :service :tags]})

This will copy the :host, :service, and :tags fields from the event being expired
into the new event being injected into the stream.
The let expression that follows our (periodically-expire) function defines a
new symbol called index. This symbol has a value of index, which is the func-

Version: v1.0.4 (9364dd6) 23



Chapter 3: Managing events and metrics with Riemann

tion that sends events to Riemann’s index. We’re going to use this symbol to tell
Riemann when to index specific events.
The let expression also wraps our streams. Next inside our let expression (note
the bracket is not closed yet) we’ve specified that what follows are streams. We’ve
done this using the streams function. Each stream is a Clojure function that takes
an event. The streams function means “here is a list of functions that you should
call when new events arrive”.
The first thing we’ve done inside our streams is to set a default TTL for our events
of 60 seconds. We’ve done this using the default function. The default function
takes a field from an event and allows you to specify a default value for that field.

Listing 3.28: Using the Riemann default function

(default :field default_value)

This TTL will determine how long an event will be valid within the index. In this
case, after 60 seconds, events which do not already have a TTL will be expired.
Next the configuration calls our index symbol. This means all incoming events
will be automatically added to Riemann’s index.
The last item in our configuration prints any events to our log file.

Listing 3.29: Logging to the Riemann log file

#(info %)

The info function writes our event and some logging data to the /var/log/
riemann/riemann.log log file and to STDOUT. You’ll see events like the following
in the log file when Riemann is running:

Version: v1.0.4 (9364dd6) 24



Chapter 3: Managing events and metrics with Riemann

Listing 3.30: A Riemann log event

INFO [2015-03-22 21:40:37,287] Thread-5 - riemann.config - #
riemann.codec.Event{:host riemanna, :service riemann streams
rate, :state nil, :description nil, :metric 7.739079374131467, :
tags [riemann], :time 1427060437213/1000, :ttl 20}

Also available is the #(warn %) function that emits events with a level of WARN
rather than INFO.
You can adjust this logging output to log additional information, such as by adding
a prefix for debugging.

Listing 3.31: Adding a prefix to Riemann logs entries

#(info "prefix" %)

This will prefix any log entries with the word prefix. You can also limit the log
output to specific fields in an event, for example:

Listing 3.32: Limiting Riemann log entries

#(info (:host %) (:service %))

This will only send the contents of the :host and :service fields to the log file.

Version: v1.0.4 (9364dd6) 25



Chapter 3: Managing events and metrics with Riemann

Listing 3.33: A filtered Riemann log event

INFO [2015-03-22 21:55:35,172] Thread-6 - riemann.config -
riemanna riemann streams rate

If you just want to print to STDOUT because, for example, you’re running Riemann
interactively to test something, you can use the prn function.

Listing 3.34: The Riemann prn function

; Print event to stdout
prn

; Print "output", then the event
#(prn "Output: " %)

Now we need to reload Riemann to enable our new configuration.

Listing 3.35: Reloading Riemann to enable our new configuration

$ sudo service riemann reload

You should start to see events in your /var/log/riemann/riemann.log file. These
events are Riemann’s own internal status reporting.

Version: v1.0.4 (9364dd6) 26



Chapter 3: Managing events and metrics with Riemann

Listing 3.36: Riemann internal events

INFO [2015-02-03 06:04:50,031] Thread-7 - riemann.config - #
riemann.codec.Event{:host riemanna, :service riemann streams
rate, :state nil, :description nil, :metric 0.0, :tags [riemann],
:time 355740372471/250, :ttl 20}
INFO [2015-02-03 06:04:50,034] Thread-7 - riemann.config - #
riemann.codec.Event{:host riemanna, :service riemann streams
latency 0.0, :state nil, :description nil, :metric nil, :tags [
riemann], :time 355740372471/250, :ttl 20}
INFO [2015-02-03 06:04:50,035] Thread-7 - riemann.config - #
riemann.codec.Event{:host riemanna, :service riemann streams
latency 0.5, :state nil, :description nil, :metric nil, :tags [
riemann], :time 355740372471/250, :ttl 20}
. . .

They include the rates and latency of your streams and TCP, UDP, andWebSockets
servers. We can use this data to report on the state of Riemann.

Sending our first event to Riemann
Let’s test that Riemann is receiving events from external sources too. You can
send data to Riemann in a number of ways, including via its own set of tools and
a variety of client native language bindings.

 NOTE You can find a full list of the clients on the Riemann website.

The set of tools are written in Ruby and available via the riemann-tools gem we
installed earlier. Each tool ships as a separate binary, and you can see a list of
the available tools in the riemann-tools repository on GitHub. They include basic

Version: v1.0.4 (9364dd6) 27

http://riemann.io/clients.html
https://github.com/riemann/riemann-tools/tree/master/bin


Chapter 3: Managing events and metrics with Riemann

health checks, web services like Apache and Nginx, Cloud services like AWS, and
more.

 TIP We can also query and send events to Riemann using the Riemann C
client. You can install it on Ubuntu and Red Hat via the riemann-c-client pack-
age and use it via the riemann-client binary.

The easiest of these tools to test with is riemann-health. It sends CPU, memory,
and load statistics to Riemann. Open up a new terminal and launch it now on a
Riemann server.

Listing 3.37: The riemann-health command

$ riemann-health

You can either run it locally on the same host where you’re running Riemann,
or you can run it on a remote server and point it at a Riemann server using the
--host flag.

Listing 3.38: The riemann-health –host option

$ riemann-health --host riemanna.example.com

The riemann-health command will now start emitting events into Riemann’s TCP
server on port 5555, or you can specify an alternate port with the --port flag. In
our current configuration we’re sending all incoming events into Riemann’s log
file via the #(info %) function. Let’s look at our incoming data in the Riemann
log file: /var/log/riemann/riemann.log.

Version: v1.0.4 (9364dd6) 28



Chapter 3: Managing events and metrics with Riemann

Listing 3.39: Our incoming Riemann data

$ tail -f /var/log/riemann/riemann.log
INFO [2015-12-23 17:23:47,050] pool-1-thread-16 - riemann.config
- #riemann.codec.Event{:host riemanna.example.com, :service
disk /, :state ok, :description 11% used, :metric 0.11, :tags
nil, :time 1419373427, :ttl 60.0}
INFO [2015-12-23 17:23:47,055] pool-1-thread-18 - riemann.config
- #riemann.codec.Event{:host riemanna.example.com, :service
load, :state ok, :description 1-minute load average/core is 0.11,
:metric 0.11, :tags nil, :time 1419373427, :ttl 60.0}
. . .

Here we see two events, one for disk space and another for load. Let’s look at the
event itself a bit more closely.

Listing 3.40: A Riemann-health disk event

{:host riemanna.example.com, :service disk /, :state ok,
:description 11% used, :metric 0.11, :tags nil,
:time 1419373427, :ttl 10.0}

Here we have an event from the host riemanna.example.com from the service disk
/. This measures the disk space used on the root or / filesystem. It has a state
of ok, a description that tells us the percentage of disk space consumed, and an
associated metric with that percentage as a float, as well as the time the event was
recorded. Lastly, the event has a Time-to-Live or TTL that controls for how long
the event is valid.
Now we know our Riemann server is working and can receive events.

 NOTE We’re going to collect and monitor a lot more of these host-level

Version: v1.0.4 (9364dd6) 29



Chapter 3: Managing events and metrics with Riemann

events and metrics in Chapters 5 and 6.

Creating our first Riemann monitoring check
Now we’ll get to the core of why we’re here. We’re going to build a monitoring
check using one of our riemann-health events. Let’s open up our /etc/riemann/
riemann.config configuration file and add our first check.

Listing 3.41: Our first monitoring check

(let [index (index)]
(streams
(default :ttl 60

index

;#(info %)
(where (and (service "disk /") (> metric 0.10))
#(info "Disk space on / is over 10%!" %))

Here we’ve added some new Clojure code for our first check. You’ll note we’ve
used a ; to comment out the #(info %) function. This stops Riemann from emit-
ting every event to the log file. Next we’ve specified a new stream called where.
The where stream selects events based on criteria then passes them to a child
stream where you can do something else with the event. In our where stream we
are matching on two criteria, combined with a Boolean and statement:

• The :service field of the event is disk /.
• The :metric field of the event is greater than 0.10 or 10%.

If these two criteria match then the matched event is sent to the #(info %) func-
tion, so it can then be sent to the log file. We’ve also added a prefix to our log

Version: v1.0.4 (9364dd6) 30



Chapter 3: Managing events and metrics with Riemann

message detailing why the event has been matched and outputted.
Let’s look at what a matched and outputted event would look like in our /var/
log/riemann/riemann.log log file.

Listing 3.42: Our prefixed warning event

Disk space on / is over 10%! #riemann.codec.Event{:host riemanna,
:service disk /, :state ok, :description 24% used, :metric 0.24,
:tags nil, :time 1449184188, :ttl 60.0}

We’ve stripped off some initial boilerplate from the event but you can see that our
event has disk space usage of 24% and hence been filtered by our where stream.
It’s been prefixed with our helpful explanatory message and then printed to the
log file.
Congratulations—you’ve just built a Riemann monitoring check! Yes, this check
is basic, doesn’t go anywhere terribly useful, and isn’t telling us anything critical
about our environment. But it starts to show us what we can do with Riemann.
We’ll see many more complex checks in later chapters as we build out our moni-
toring environment. Now let’s explore some more ways we can filter events.

An interlude into Riemann filtering
Before we go on, and because filtering is going to be key to how we manage events
inside Riemann, let’s look at some more examples of how to use filtering streams.
In our first example we’re going to match events using regular expressions. It’s a
common use case and a good starting point.

Version: v1.0.4 (9364dd6) 31



Chapter 3: Managing events and metrics with Riemann

Listing 3.43: Using the where stream with a regular expression

(where (service #"^nginx"))

In Clojure, regular expressions are prefixed with # and wrapped in double quotes.
Here the where stream matches all events where the :service field starts with
nginx.
We can also use Boolean operators to match events.

Listing 3.44: Using the where stream with booleans

(where (and (tagged "www") (state "ok")))

In this case our where stream matches events that are tagged with www and have
a :state of ok. This example also combines the where stream and a new stream
called tagged.
The tagged stream selects all events where the :tags field contains www. The
tagged stream is shorthand for the tagged-all function which matches all tags
specified. There’s another function called tagged-any that allows you to match
any one of a series of tags.

Listing 3.45: The tagged-any stream

(tagged-any ["www" "app1"]
#(info %))

Here we’ve used the tagged-any stream to match any event which has either the
www or the app1 tag, and then send the event to be logged.

Version: v1.0.4 (9364dd6) 32



Chapter 3: Managing events and metrics with Riemann

We can also combine tags, booleans, and regular expressions to do complex match-
ing.

Listing 3.46: Using the where stream for complex matches

(where (and (tagged "www") (state "ok") (service #"^apache*")))

Here we’ve matched events that are tagged with www, have a state of ok, and are
from services starting with apache.
Up until now we’ve matched events using “standard” fields like :service and :
state. You’ll note we’ve referred to these fields by their names, minus the :. This
is some useful syntactic sugar provided by the where filtering stream. Any refer-
ences to the “standard” fields like :service, :host, :tags, :metric, :description,
:time, and :ttl can use these name shortcuts. If, however, you want to refer to
an optional field then you need to refer to it like so:

Listing 3.47: Referring to an optional example field in Riemann

(:field_name event)

We prefix the field name with a colon and tell Riemann it belongs to event, which
is Riemann’s shorthand for the event being processed. For example, with the field
named type it would look like:

Listing 3.48: Referring to an optional field in Riemann

(:type event)

Let’s see this in action.

Version: v1.0.4 (9364dd6) 33



Chapter 3: Managing events and metrics with Riemann

Listing 3.49: The optional type field in Riemann

(where (and (tagged "www") (= (:type event) "load"))

Here the where stream matches all events tagged with www and the value of the
:type field is load. You can see that the second :type field match does it using a
combination of an operator, the name of the field, and a value, constructed like
so:

Listing 3.50: Referring to an optional field in Riemann

(operator (:field_name event) value)

Using this operator-field-value syntax we can also do math operations to match
events.

Listing 3.51: Using the where stream with math

(where (and (tagged "www") (>= (* metric 10) 5)))

Here we’ve matched all events with the www tag and those in which the value of
the :metric field multiplied by 10 is greater than or equal to 5. You can use the
normal collection of operators: greater than, equal to, less than, and so on in these
statements.
We also use a similar syntax to do a range query.

Version: v1.0.4 (9364dd6) 34



Chapter 3: Managing events and metrics with Riemann

Listing 3.52: Using the where stream for a range query

(where (and (tagged "www") (< 5 metric 10)))

Here we’ve matched all events tagged with www and those where the :metric field
has a value between 5 and 10.

 TIP You can learn more about event filtering on the Riemann website.

Connecting Riemann servers
Now that we know our individual Riemann servers are working, let’s hook them
together. In our architecture we have two upstream Riemann servers: riemanna
.example.com and riemannb.example.com. We also have a downstream Riemann
server riemannmc.example.com. We’re assuming you’ve used the steps above to
install Riemann onto each of these hosts.

Version: v1.0.4 (9364dd6) 35

http://riemann.io/howto.html#filter-events


Chapter 3: Managing events and metrics with Riemann

Figure 3.3: Connecting Riemann servers

In our architecture we want to send escalations and status updates for our produc-
tion environments downstream to our Mission Control environment, riemannmc.
example.com. But initially we’re just going to send information about Riemann
itself. This will allow us to detect if our upstream Riemann servers are operational.
We’re going to connect the upstream servers to the downstream server and then
test our connection.

Version: v1.0.4 (9364dd6) 36



Chapter 3: Managing events and metrics with Riemann

Configuring the upstream Riemann servers
First, we need to define our downstream Riemann server to our upstream servers.
We do this by first specifying a new stream called async-queue!. The async-queue
! stream creates an asynchronous thread pool queue. That queue accepts events
and passes those events to child streams via that thread pool asynchronously.
So why pass the events asynchronously? Well Riemann is fast but anytime a
stream connects to an external service there is a risk that your processing will
be blocked waiting for that external service. With an asynchronous queue we tell
Riemann to queue events and return to the mainline without blocking. In this case
we’re then going to use Riemann’s own TCP client as one of those asynchronous
streams to send events to our downstream server.

 WARNING Asynchronous streams look like an easy fix for connecting
to potentially blocking services but they come with some caveats. You should
carefully read the documentation before using them wildly.

Now let’s look at an updated configuration file.

Version: v1.0.4 (9364dd6) 37

http://riemann.io/api/riemann.config.html#var-async-queue.21
http://en.wikipedia.org/wiki/Thread_pool_pattern
http://riemann.io/howto.html#asynchronous-streams


Chapter 3: Managing events and metrics with Riemann

Listing 3.53: Updated Riemann configuration

(logging/init {:file "/var/log/riemann/riemann.log"})

(require 'riemann.client)

. . .

(let [index (index)
downstream (batch 100 1/10
(async-queue! :agg { :queue-size 1e3

:core-pool-size 4
:max-pool-size 32}

(forward
(riemann.client/tcp-client :host "riemannmc"))))]

(streams
(default :ttl 60

index

#(info %)

(where (service #"^riemann.*")
downstream))))

You can see we’ve added some new configuration that adds the Riemann client.
The require function is much like Ruby’s require method. It loads additional
code we might need to do certain actions.

Listing 3.54: Requiring the Riemann client

(require 'riemann.client)

Here our require loads the Riemann TCP client. We’re going to use this client to
send events downstream.

Version: v1.0.4 (9364dd6) 38

https://clojuredocs.org/clojure.core/require


Chapter 3: Managing events and metrics with Riemann

 NOTE We’re going to talk about require in a lot more detail a little later
in this chapter.

Next, we’ve added another binding to our let expression (remember, a binding
is a symbol-value pair). This configures the destination and process for sending
events.

Listing 3.55: Added downstream binding to Riemann

(let [index (index)
downstream (batch 100 1/10
(async-queue! :agg { :queue-size 1e3

:core-pool-size 4
:max-pool-size 32}

(forward
(riemann.client/tcp-client :host "riemannmc"))))]

. . .
)

Our binding defines a symbol called downstream. The value of this symbol is a
series of streams. Our first stream is called batch. This batches up events to send.
Each batch is sent when 100 events or 1/10th of a second has passed. The batch
stream passed the events into our async-queue!, which we’ve called :agg (for
aggregation).
We’ve defined a queue-size for our async-queue! in exponential notation, 1e3
or 1000. We set core-pool-size (the number of threads in the pool) to 4 and
max-pool-size (the maximum number of threads in the pool) to 32. This should
generally work for most scenarios.

Version: v1.0.4 (9364dd6) 39

http://riemann.io/api/riemann.streams.html#var-batch


Chapter 3: Managing events and metrics with Riemann

 NOTE You can read a bit more about Java-based ThreadPooling here. This
provides some useful information about the interaction of queue and pool sizing.

Our queue takes the incoming event batches and passes them to another child
stream, forward. The forward stream sends events through a Riemann client—
here the TCP client—to our riemannmc host.

Listing 3.56: Riemann client forwarding configuration

(riemann.client/tcp-client :host "riemannmc")

 NOTE This assumes you’ve configured DNS, added the various Riemann
servers to /etc/hosts, or provided some other way for Riemann to resolve the
riemannmc hostname.

This is a complex configuration so let’s walk through the whole process to make
sure it’s clear.

1. We define the downstream symbol. When that symbol is referenced events
are passed into it.

2. Events first go into the batch stream. Every 100 events or 1/10th of a second,
events are batched and sent on.

3. The batched events are passed to the async-queue! stream.

4. The async-queue! stream passes the events to the forward stream which

Version: v1.0.4 (9364dd6) 40

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/ThreadPoolExecutor.html
http://riemann.io/api/riemann.streams.html#var-forward


Chapter 3: Managing events and metrics with Riemann

sends them to the riemannmc server.

Lastly, we’ve added a where stream to select the events we want to send.

Listing 3.57: The where filtering stream for forwards

(where (service #"^riemann.*")
downstream)

As we discovered earlier, the where filtering stream selects events based on specific
criteria—for example, from a particular host or service—via a regular expression
or from the result of executing a function of some kind.
Here our where stream selects any events that match the regular expression ^
riemann.*. This is any events whose :service field starts with riemann.. These
events are then passed to the downstream symbol which forwards them to the
riemannmc server.
We then add the configuration we created to both the riemanna and riemannb
servers.

Configuring the downstream Riemann server
Now let’s look at the configuration on our downstream riemannmc server.

Version: v1.0.4 (9364dd6) 41



Chapter 3: Managing events and metrics with Riemann

Listing 3.58: The downstream riemannmc server

. . .

(let [index (index)]
; Inbound events will be passed to these streams:
(streams
(default :ttl 60

; Index all events immediately.
index

#(info %))))

You can see it’s basically the Riemann configuration we’ve just created except that
it lacks our downstream sending configuration.

 NOTE We’ve included all example configuration and code in the book on
GitHub.

Enabling the send of our Riemann events downstream
We now restart Riemann on all our servers to enable the sending of our events
downstream.

Version: v1.0.4 (9364dd6) 42

https://github.com/turnbullpress/aom-code/tree/master/3/riemann
https://github.com/turnbullpress/aom-code/tree/master/3/riemann


Chapter 3: Managing events and metrics with Riemann

Listing 3.59: Restarting Riemann to enable forwarding

riemanna$ sudo service riemann restart
riemannb$ sudo service riemann restart
riemannmc$ sudo service riemann restart

We should now see some new events for our queue in the /var/log/riemann/
riemann.log log file on our upstream servers.

Listing 3.60: Riemann agg events on riemanna or riemannb

INFO [2015-02-03 15:29:10,911] Thread-7 - riemann.config - #
riemann.codec.Event{:host riemanna, :service riemann executor
agg accepted rate, :state ok, :description nil, :metric 250/2507,
:tags nil, :time 711497675449/500, :ttl 20}
INFO [2015-02-03 15:29:10,911] Thread-7 - riemann.config - #
riemann.codec.Event{:host riemanna, :service riemann executor
agg completed rate, :state ok, :description nil, :metric
250/2507, :tags nil, :time 711497675449/500, :ttl 20}
INFO [2015-02-03 15:29:10,911] Thread-7 - riemann.config - #
riemann.codec.Event{:host riemanna, :service riemann executor
agg rejected rate, :state ok, :description nil, :metric 0N, :
tags nil, :time 711497675449/500, :ttl 20}
. . .

These are useful to allow us to track the state, performance, and status of our
forwarding.
We’ll also start to see events on our downstream server: riemannmc.
You’ll note we don’t have to change anything on the riemannmc server. It’s already
set up to receive events. If we look in the /var/log/riemann/riemann.log log file
we’ll find events from riemanna and riemannb as well as the local events from
riemannmc.

Version: v1.0.4 (9364dd6) 43



Chapter 3: Managing events and metrics with Riemann

Listing 3.61: Combined events from upstream and downstream

INFO [2015-02-03 08:35:58,507] Thread-6 - riemann.config - #
riemann.codec.Event{:host riemannMC, :service riemann server ws
0.0.0.0:5556 in latency 0.999, :state ok, :description nil, :
metric nil, :tags nil, :time 1422970558489/1000, :ttl 20}
. . .
INFO [2015-02-03 08:36:01,495] defaultEventExecutorGroup-2-1 -
riemann.config - #riemann.codec.Event{:host riemannb.
lovedthanlost.net, :service riemann streams rate, :state nil, :
description nil, :metric 3.9884721385215447, :tags [riemann], :
time 1422970561, :ttl 20.0}
. . .
INFO [2015-02-03 08:36:14,314] defaultEventExecutorGroup-2-1 -
riemann.config - #riemann.codec.Event{:host riemanna, :service
riemann streams latency 0.5, :state nil, :description nil, :
metric 0.222681, :tags [riemann], :time 1422970574, :ttl 20.0}
. . .

Here we see events from all three servers indicating that they are successfully
connected.

 NOTE We’ve included this example configuration with all the required
files in the book’s code on GitHub.

Alerting on the upstream Riemann servers
So now the downstream riemannmc Riemann server knows about the upstream
riemanna and riemannb servers. But we also want to know when something goes
wrong with those upstream servers. To do that we’re going to take advantage of

Version: v1.0.4 (9364dd6) 44

https://github.com/turnbullpress/aom-code/tree/master/3/riemann


Chapter 3: Managing events and metrics with Riemann

Riemann’s index.
Remember the index is a table of the current state of all services being tracked
by Riemann. Each event you tell Riemann to index is added as a service mapped
by its :host and :service fields. The index retains the most recent event for
that service. Each indexed event has a Time-to-Live or TTL. The TTL can be set
by the event’s :ttl field, or if no TTL is present then a default can be specified.
Our default TTL is 60 seconds set using the default function in our Riemann
configuration.
If a service fails it stops submitting events to Riemann. In our Riemann configura-
tion we have a periodically-expire function that runs every 5 seconds. This is
the event reaper for the index. It checks the TTL of events in the index and expires
and deletes events from the index if their TTL is expired. When an indexed event
is expired a new event is created for the indexed service with a :state of expired
and sent back to the stream.
We then monitor the stream for events with a :state of expired, which means
the service isn’t reporting, and notify on those.
Let’s create some configuration on the riemannmc server to catch expired events
from the riemanna and riemannb servers. This means that if these servers stop
sending events, we’ll get notified.
Take a look at our riemannmc Riemann configuration now. Our /etc/riemann/
riemann.config file looks like:

Version: v1.0.4 (9364dd6) 45



Chapter 3: Managing events and metrics with Riemann

Listing 3.62: The downstream riemannmc server configuration

(logging/init {:file "/var/log/riemann/riemann.log"})

(let [host "0.0.0.0"]
(repl-server {:host "127.0.0.1"})
(tcp-server {:host host})
(udp-server {:host host})
(ws-server {:host host}))

(periodically-expire 10 {:keep-keys [:host :service :tags, :
state, :description, :metric]})

(let [index (index)]
; Inbound events will be passed to these streams:
(streams
(default :ttl 60

; Index all events immediately.
index

#(info %))))

It’s similar to our upstream Riemann servers, minus the configuration that sends
events downstream.
We’re going to add some configuration to:

1. Identify expired events.
2. Select only the Riemann-specific events.
3. Email a notification on these Riemann-specific expired events.

Let’s look at this additional configuration. First we’re going to configure a noti-
fication mechanism. We’re going to start with something simple: email. If we
detect an expired Riemann event, we’ll send an email notification.
To do this we need to configure the mailer plugin. The mailer plugin allows us to
send email from Riemann. We’re going to configure the mailer plugin in a names-

Version: v1.0.4 (9364dd6) 46



Chapter 3: Managing events and metrics with Riemann

pace. Namespaces are a way of organizing code and functions. You can consider
namespaces a more advanced method of organizing and including streams into
our Riemann configuration.
Riemann uses Clojure’s built-in namespacing to do this. In Clojure it’s generally
recommended you use a carefully defined namespace that won’t overlap with
anything else. In most cases this is a format like:

Listing 3.63: Clojure namespace format

[organization].[library|app].[group-of-functions]

In our case we’re going to use examplecom as our organization. You might use
mycorpname or a department name or something similar. We’re then going to call
our library etc because that’s broadly its function: useful functions we’re going to
regularly use in our Riemann configuration. Finally, we’re going to call the group
of function: email. Literally examplecom.etc.email or Example.com Etc Email.
Our namespace also shapes where we store our code on our Riemann server. Rie-
mann expects to find the code in a directory structure matching the namespace,
underneath the /etc/riemann directory. So let’s start by creating that directory
structure.

Listing 3.64: Creating the examplecom.etc namespace path

$ sudo mkdir -p /etc/riemann/examplecom/etc

Let’s then create a file to hold our Riemann code and functions.

Version: v1.0.4 (9364dd6) 47

http://clojure.org/namespaces


Chapter 3: Managing events and metrics with Riemann

Listing 3.65: Creating the email.clj file

$ sudo touch /etc/riemann/examplecom/etc/email.clj

We can see our directory structure and file follows the namespace:
examplecom/etc/email

Our Riemann code and functions will go inside the email.clj file.

 NOTE .clj is the extension for a Clojure code file.

Let’s look at the code in this file to get started.

Listing 3.66: Requiring the Riemann functions

(ns examplecom.etc.email
(:require [riemann.email :refer :all]))

(def email (mailer {:from "reimann@example.com"}))

Firstly, we declare a name using the ns function. The ns function creates a new
namespace. We’ve called our namespace: examplecom.etc.email. This name is
how we’ll reference our namespace in our Riemann configuration.

 TIP Namespaces are the standard Clojure of organizing code, libraries and
functions. You can read more about namespacing in the Riemann HOWTO.

Version: v1.0.4 (9364dd6) 48

http://riemann.io/howto.html#organizing-with-namespaces


Chapter 3: Managing events and metrics with Riemann

Next we’ve specified an argument, :require, to be passed into our namespace.
The :require statement is closely related to the require function we used earlier
to include Riemann’s TCP client. It performs the same function inside a namespace.
The :require argument here includes the riemann.email library of functions. The
:require ensures that the namespace to be required exists, is ready to be used and
evaluates the corresponding namespace. By evaluating the namespace, it also
defines and makes available any functions in that namespace.
Inside our examplecom.etc.email namespace we can now refer to functions inside
the riemann.email namespace, like so:
riemann.email/mailer

Referring to functions with the fully-qualified namespace is a little unwieldy
though. We’ve added an argument to our :require directive called :refer. The
:refer function means you don’t have to use fully qualified names to reference
the functions inside a namespace. You can refer one, many or all functions
in a namespace. Here we’ve used the :all option to refer all functions inside
riemann.email.
Alternatively, if you only want to use one or more functions from that namespace
you can specify only those.

Listing 3.67: Referring functions

(ns examplecom.etc.email
(:require [riemann.email :refer [mailer]]))

. . .

This would only refer the mailer function from the riemann.email namespace.
We can now reference a function inside our namespace without needing to prefix
it with: riemann.email.

Version: v1.0.4 (9364dd6) 49

https://clojuredocs.org/clojure.core/require


Chapter 3: Managing events and metrics with Riemann

 NOTE Be careful with this. If you define a symbol with the same name
inside two namespaces and refer both of them then you will get a conflict and
Riemann will fail to start. You cannot have examplecom.etc.email/foo and
examplecom.etc.fish/foo defined and referred.

Now let’s look at our mailer configuration in this file.

Listing 3.68: Configuring email notifications in Riemann

(def email (mailer {:from "reimann@example.com"}))

You can see we’ve used the def statement. As we learned in Appendix A, the def
statement declares a symbol and a var.
In our case we’re giving the email symbol a value of mailer. This tells Rie-
mann that anywhere we specify email it should call the mailer function from the
riemann.email namespace. As we referred to :all functions in this namespace
we don’t have to prefix mailer with riemann.email.
The mailer function sends email. We’ve also specified one option for the mailer
function: :from, which controls the source email address for any emails from
Riemann.
The mailer function uses a standard Clojure email library called Postal under the
covers to send email. By default it uses the local sendmail binary but it can also
be configured to use an SMTP server.

 TIP A quick way to add the sendmail binary and set up local mail sending
is to install the mailutils package on Ubuntu, or the mailx package on Red Hat

Version: v1.0.4 (9364dd6) 50

https://aphyr.com/posts/303-clojure-from-the-ground-up-functions
http://riemann.io/api/riemann.email.html#var-mailer
https://github.com/drewr/postal


Chapter 3: Managing events and metrics with Riemann

and related distributions.

Listing 3.69: Configuring an SMTP server for Postal

(def email (mailer {:host "smtp.example.com"
:user "james"
:pass "password"
:from "riemann@example.com"}))

 TIP We should add this email.clj file and its configuration to all our Rie-
mann hosts. It’s going to be useful in future chapters to send notifications.

Now we’ve got a way to notify on our event, let’s add that capability to our Rie-
mann configuration. To use our new email function we need to tell Riemann
about it in our riemann.config file. To do this we again use the require function
but slightly differently this time.

Listing 3.70: Adding our email function to Riemann

(logging/init {:file "/var/log/riemann/riemann.log"})

(require 'riemann.client)
(require '[examplecom.etc.email :refer :all])

. . .

We’ve added a new require to our riemann.config file below our riemann.client
. It includes the examplecom.etc.email namespace and uses the :refer :all

Version: v1.0.4 (9364dd6) 51



Chapter 3: Managing events and metrics with Riemann

directive to refer all functions in that namespace.
On startup, Riemann automatically searches for our namespace underneath the
/etc/riemann directory, evaluates the namespace and the functions in it. In our
case this will cause Riemann to search for a directory:
/etc/riemann/examplecom/etc/

And then load the file at:
/etc/riemann/examplecom/etc/email.clj

The :refer then allows us to reference the email function inside our Riemann
configuration, without needing to prefix it with the examplecom.etc.email names-
pace.
We can now specify a stream to grab the relevant events.

Listing 3.71: Our expired Riemann event filter stream

(expired
(where (service #"^riemann.*")
(email "james@example.com")))

Here we’ve used the expired filtering stream. The expired stream matches events
expired from the index. You can think about it like a where stream with the match
on the :state field of expired preconfigured.
We’ve used a where stream to do a regular expression match for any services that
start with riemann.. Any events matched by the where stream will be passed to
the email var and mailed via the mailer function to james@example.com.
To activate this new email function we now need to reload or restart Riemann.
This will load, evaluate and refer the examplecom.etc.email namespace.
So if we were to stop Riemann on the riemanna host now, after the TTL had
expired, then the Riemann index on the riemannmc host would generate some

Version: v1.0.4 (9364dd6) 52

http://riemann.io/api/riemann.streams.html#var-expired


Chapter 3: Managing events and metrics with Riemann

events like this:

Listing 3.72: The riemanna expired streams event

{:ttl 60, :time 713456271631/500, :state expired, :service
riemann streams latency 0.999, :host riemanna, :tags [riemann]}

We see the event has :state of expired and contains the :service, :host, and
:tags fields, all of which were copied to the new expired event when the event
reaper ran over the index. The event also contains the default TTL of 60 seconds,
and the time the event was generated.
This matched event would then be passed to the email var, which would trigger
an email to be sent. That email will look something like this:

Figure 3.4: Email notification

It’s great we’re going to be getting emails when the Riemann server fails… But
there’s a problem. We’ll get an email notification for every Riemann metric that is
being collected—yes, one for each event. This could mean a lot of emails letting
us know that one of our Riemann servers is down.

Version: v1.0.4 (9364dd6) 53



Chapter 3: Managing events and metrics with Riemann

Throttling Riemann events
To prevent this flood of emails we’re going to add a throttle to our notifications.
Let’s add some throttling to our configuration.

Listing 3.73: Our throttled expired Riemann event filter

(expired
(where (service #"^riemann.*")
(throttle 1 600

(email "james@example.com")))

You’ll see we’ve added a new stream called throttle. The throttle allows a
number of events through and then ignores any others for a period of time.

Listing 3.74: The throttle stream

(throttle 1 600

This throttle works by allowing one event through and then dropping and ignoring
all other events for 600 seconds or 10 minutes. It’s a pretty crude mechanism but
works for services where we only care about a limited number of notifications.

Rolling up Riemann events
An alternative to throttle is the rollup stream. The rollup stream will allow a
few events to pass through, then it will collect and hold the others. It holds those
events for a period of time and then sends a summary of them.

Version: v1.0.4 (9364dd6) 54

http://riemann.io/api/riemann.streams.html#var-throttle
http://riemann.io/api/riemann.streams.html#var-rollup


Chapter 3: Managing events and metrics with Riemann

Listing 3.75: A rollup of our expired Riemann events

(expired
(where (service #"^riemann.*")
(rollup 5 3600

(email "james@example.com")))

The rollup stream here will only send five emails per 3,600 seconds (one hour).
You’ll get four emails immediately and then, after an hour, you’ll get a final email
with a summary of any other events received during that hour period.

 WARNING The rollup stream accumulates events in memory. The
more events there are, the more memory is consumed. You should be careful to
ensure it doesn’t exhaust memory on the host holding the rolled-up events.

Alternatives to email notifications
Obviously email is not always an ideal notification mechanism—we all already
have folders full of emails—so Riemann provides a wide variety of other mecha-
nisms including PagerDuty and a variety of chat applications like Slack.
We’ll talk a lot more about these mechanisms and about notifications in Chapter
10.

 NOTE We’ve included the riemannmc configuration in the book’s code here.

Version: v1.0.4 (9364dd6) 55

http://riemann.io/howto.html#notify-with-pagerduty
http://riemann.io/api/riemann.slack.html
https://github.com/turnbullpress/aom-code/tree/master/3/riemann


Chapter 3: Managing events and metrics with Riemann

Testing your Riemann configuration
One of the advantages of Riemann’s configuration being a Clojure program is that
you can write tests to confirm that your configuration is working correctly.
To test Riemann events, we tap into points where we’d like to observe events and
then write tests that confirm the right behavior is occurring and the right events
are being seen or generated. In production Riemann will ignore these taps so you
don’t experience a performance hit from adding them.
Let’s look at an example. In our current riemannmc configuration we accept in-
coming events and index them immediately.

Listing 3.76: Revisting our riemannmc configuration

(logging/init {:file "/var/log/riemann/riemann.log"})

(let [host "0.0.0.0"]
(repl-server {:host "127.0.0.1"})
(tcp-server {:host host})
(udp-server {:host host})
(ws-server {:host host}))

(periodically-expire 10 {:keep-keys [:host :service :tags, :
state, :description, :metric]})

(let [index (index)]

(streams
(default :ttl 60

; Index all events immediately.
index)))

So our test is going to confirm that events coming into the stream are being in-
dexed. To support this test we need to wrap our index stream in a riemann.test
/tap function. This will allow us to watch the events being indexed.

Version: v1.0.4 (9364dd6) 56



Chapter 3: Managing events and metrics with Riemann

Listing 3.77: Adding a tap to our riemannmc index

(logging/init {:file "/var/log/riemann/riemann.log"})

(let [host "0.0.0.0"]
(repl-server {:host "127.0.0.1"})
(tcp-server {:host host})
(udp-server {:host host})
(ws-server {:host host}))

(periodically-expire 10 {:keep-keys [:host :service :tags, :
state, :description, :metric]})

(let [index (tap :index (index))]

(streams
(default :ttl 60

; Index all events immediately.
index)))

You see that we’ve added a tap around our index. We’ve called that tap :index.
We then create one or more tests that sample incoming events to the index. We
do this by defining a tests stream and using the standard Clojure test function:
deftest.

Version: v1.0.4 (9364dd6) 57



Chapter 3: Managing events and metrics with Riemann

Listing 3.78: Adding tests to our riemannmc configuration

(logging/init {:file "/var/log/riemann/riemann.log"})

(let [host "0.0.0.0"]
(repl-server {:host "127.0.0.1"})
(tcp-server {:host host})
(udp-server {:host host})
(ws-server {:host host}))

(periodically-expire 10 {:keep-keys [:host :service :tags, :
state, :description, :metric]})

(let [index (tap :index (index))]

(streams
(default :ttl 60

; Index all events immediately.
index)))

(tests
(deftest index-test
(is (= (inject! [{:service "test"

:time 1}])
{:index [{:service "test"

:time 1
:ttl 60}]}))))

We see a new set of tests streams in our configuration now. We’ve defined one
test, index-test. The test is a simple process:

• Inject an event into the stream.
• Monitor the :index tap and see if that event arrives.

The inject! function injects an event into the stream. Here we’re injecting a
single event with a :service field set to test and a :time field of 1. We’re then

Version: v1.0.4 (9364dd6) 58



Chapter 3: Managing events and metrics with Riemann

asking if the :index tap sees a like event. We’ve added the :ttl field of 60 because
the default function sets that when we index an event. Without it our test will
fail because the event we’re watching for will not match the event we’ve injected.
We then run our tests using the riemann binary. Riemann must be stopped when
we run the tests because our whole configuration, including components like in-
terface bindings, is run when the tests are run.

Listing 3.79: Running the Riemann tests

$ sudo riemann test riemann.config
INFO [2015-07-15 17:40:01,236] main - riemann.repl - REPL server
{:port 5557, :host 127.0.0.1} online

Testing riemann.config-test

Ran 1 tests containing 1 assertions.
0 failures, 0 errors.

We see that our single test, containing a single assertion, has been run and has
passed successfully. This means we’ve injected an event into the stream, watched
the tap, and then seen the corresponding event appear in the tap.

 TIP You can readmore about the testing of your configuration in the Riemann
documentation.

Version: v1.0.4 (9364dd6) 59

http://riemann.io/howto.html#writing-tests
http://riemann.io/howto.html#writing-tests


Chapter 3: Managing events and metrics with Riemann

Validating Riemann configuration
Riemann configuration looks pretty scary at first. But to make it easier to build
your Riemann configuration there is a syntax checker available. To use it you
need to download and build it. This assumes you have Java, Git, and Leiningen
installed.

Listing 3.80: Download the Riemann syntax checker

$ git clone https://github.com/samn/riemann-syntax-check.git

Then build the syntax checker as a Jar file.

Listing 3.81: Build the Riemann syntax checker

$ cd riemann-syntax-check
$ lein uberjar
. . .

You should see some dependencies downloaded and some Jar files created. You
can then use one of these Jar files to syntax check a Riemann configuration.

Listing 3.82: Syntax check a Riemann configuration

$ cd /etc/riemann/
$ java -jar riemann-syntax-check-0.2.0-standalone.jar riemann.
config

Here we’re syntax checking the riemann.config configuration file. Any errors or
issues will be reported so you can fix them before reloading or restarting Riemann.

Version: v1.0.4 (9364dd6) 60



Chapter 3: Managing events and metrics with Riemann

Performance, scaling, and making Riemann highly
available
The performance of Riemann is largely memory-bound. The only disk IO it uses is
logging. You should ensure any hosts running Riemann have generous allocations
of memory.
You can configure how much additional memory goes to the Riemann process by
configuring the Java heap size options that are passed when Riemann is launched.
To do this we add any required options to the /etc/default/riemann file on
Ubuntu and /etc/sysconfg/riemann file on Red Hat and similar distributions. In
both files, uncomment the line starting with EXTRA_JAVA_OPTS and add the -Xms
and -Xmx flags with an appropriate amount of additional memory. These flags
control the initial and maximum Java heap size. Like so:

Listing 3.83: Configuring additional RAM

EXTRA_JAVA_OPTS="-Xms4096m -Xmx4096m"

Oracle recommends that you set the initial and maximum heap size to the same
value to minimize garbage collections.

 NOTE You can read a bit more about the available -X options in the Java
documentation.

You can also view the JVM tuning options in the Debian and RPM packages in the
AGGRESSIVE_OPTS environment variable for other ideas on how to tune Riemann.
At this time there isn’t an out-of-the-box solution for high availability with Rie-

Version: v1.0.4 (9364dd6) 61

http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/jrdocs/refman/optionX.html
http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/jrdocs/refman/optionX.html
https://github.com/riemann/riemann/blob/master/pkg/deb/riemann


Chapter 3: Managing events and metrics with Riemann

mann. Riemann servers don’t come with a highly available, fail-over solution or
configuration. This isn’t all that dire though. Riemann doesn’t maintain much
state—it’s mostly being used as a routing engine for events and metrics. Losing
that capability isn’t great, but because of the statelessness of Riemann it’s easy to
rebuild or add a new Riemann host to replace any unavailable hosts.
Alternatively you could run one or more Riemann hosts in a warm standby and
replace missing hosts with new ones relatively quickly. You could also supplement
this with a shared proxy like HAProxy and add multiple Riemann servers to your
back-end host pool. Then if a failure occurred on one host another would be
available.
For scaling it’s also not yet possible to automatically scale and distribute Riemann
workloads in any sort of cluster or distributed manner. For scaling Riemann it
is largely a matter of horizontal scaling by adding Riemann servers, perhaps dis-
tributed by application, rack, stack, data center, or site. Again using a solution like
a shared proxy to distribute events and metrics to a series of back-end Riemann
hosts depending on their source is also an option.
Or you could also create a sharded configuration. This configuration would run
two or more Riemann servers in parallel. Every event would be assigned a shard
ID from the Riemann server that received it. They would then be consolidated
downstream, filtering out the shard ID and using a merge algorithm for each set
of events.

Version: v1.0.4 (9364dd6) 62



Chapter 3: Managing events and metrics with Riemann

Figure 3.5: Sharded Riemann

This book does not currently cover either high availability or scaling in any depth,
but will be updated if better native solutions become available.

 TIP There’s also a plugin to enable JMX-based monitoring of Riemann. You
can see read more about using JMX to monitor the JVM in Chapters 8 and 12.

Version: v1.0.4 (9364dd6) 63

https://github.com/faxm0dem/riemann-mbeans


Chapter 3: Managing events and metrics with Riemann

Alternatives to Riemann
There are a few event-based or message queue systems that work like Riemann.
This is not a definitive list but it’s a sampling of the more interesting tools you
could use if the choices in the book aren’t suitable or to your taste.

• Apache Samza and Apache Kafka— A distributed real-time computation sys-
tem and a publish-subscribe messaging system with a cluster-centric design.

• Prometheus — Prometheus is an open-source systems monitoring and alert-
ing toolkit originally built at SoundCloud.

• Heron - Heron is realtime analytics platform developed by Twitter.
• Bosun — An open-source, MIT-licensed, monitoring and alerting system
built by Stack Exchange.

• Anthracite — An event and change logging and management application.
• The ELK Stack — Elasticsearch, Logstash, Kibana. A powerful logging tool
that can also be adapted to handle events and metrics. We’ll look at it more
closely in Chapter 8.

• Heka — Another logging tool, this one released by the Mozilla team. Sadly,
no longer maintained. There is a potential successor called Hindsight.

• Godot — An event streamer modeled on Riemann but rewritten in node.js.
Instead of Clojure, it’s written in Javascript. It’s somewhat slower than Rie-
mann but shares many concepts.

• Ganglia — A monitoring tool with a focus on clusters and grids.
• Munin — A popular metric and monitoring tool that uses RRDTool.
• Snap - Open source by Intel, Snap is a telemetry collection and processing
tool. It also supports publishing data to Riemann.

Version: v1.0.4 (9364dd6) 64

http://samza.apache.org/
http://kafka.apache.org/
https://prometheus.io/
https://github.com/twitter/heron
https://bosun.org/
https://github.com/Dieterbe/anthracite
https://www.elastic.co/products
https://github.com/mozilla-services/heka
http://permalink.gmane.org/gmane.comp.mozilla.heka/1029
https://github.com/trink/hindsight
http://blog.nodejitsu.com/waiting-for-godot/
http://ganglia.info/
http://munin-monitoring.org/
http://oss.oetiker.ch/rrdtool/
http://snap-telemetry.io/


Chapter 3: Managing events and metrics with Riemann

Summary
In this chapter we’ve learned how to install Riemann. We installed Riemann on
three hosts: riemanna and riemannb in our production data centers, and riemannmc
in our Mission Control environment. We’ve also had an introduction to configur-
ing and running it.
We’ve also connected our upstream Riemann production servers with the down-
stream Riemann server in Mission Control. We then set up notifications in the
downstream Riemann server to detect if there are any issues with the upstream
servers.
These Riemann servers will form the basis of our monitoring framework: event-
centric routing engines that will allow us to collect, process, and send events and
metrics. We’ll track the state of our hosts, services, and applications centrally in
the Riemann index, notify on any critical or important events (or the absence of
those events), and then graph any related metrics.
In the next chapter we’re going to continue our monitoring build by installing
and configuring the graphing engine Graphite in our environment. We’ll then
send some initial metrics from Riemann to Graphite.

Version: v1.0.4 (9364dd6) 65



Chapter A

An Introduction to Clojure and
Functional Programming

Riemann is configured using a Clojure-based configuration file. This means your
configuration file is actually processed as a Clojure program. So, to process events
and send notifications and metrics, you’ll be writing Clojure. Don’t panic! You
won’t need to become a full-fledged Clojure developer to use Riemann. We’ll
teach you what you need to know in order to use Riemann. Additionally, Riemann
comes with a lot of helpers and shortcuts that make it easier to write Clojure to
do what we need to process our events.
Let’s learn a bit more about Clojure and help you get started with Riemann. Clo-
jure is a dynamic programming language that targets the Java Virtual Machine.
It’s a dialect of Lisp and is largely a functional programming language.
Functional programming is a programming style that focuses on the evaluation
of mathematical functions and steers away from changing state and mutable data.
It’s highly declarative, meaning you build programs from expressions that describe
“what” a program should accomplish rather than “how” it accomplishes things.

66

http://clojure.org/functional_programming
https://en.wikipedia.org/wiki/Functional_programming


Chapter A: An Introduction to Clojure and Functional Programming

 NOTE Languages that describe more of the “how” are called imperative
languages.

Examples of declarative programming languages include SQL, CSS, regular expres-
sions, and configuration management languages like Puppet and Chef. Let’s look
at a simple example.

Listing A.1: A declarative statement

SELECT user_id FROM users WHERE user_name = "Alice"

In this SQL query we’re asking for the user_id for user_name of Alice from the
users table. The statement is asking a declarative “what” question. We don’t
really care about the “how”; the database engine takes care of those details.
In addition to their declarative nature, functional programming languages try to
eliminate all side effects from changing state. In a functional language, when
you call a function its output value depends only on the inputs to the function.
So if you repeatedly call function f with the same value for argument x, f(x), it
will produce the same result every time. This makes functional programs easy to
understand, test, and predict. Functional programming languages call functions
that operate like this “pure” functions.
The best way to get started with Clojure is to understand the basics of its syntax
and types. Let’s get an introduction now.

 WARNING This is going to be a high-level introduction to Clojure. It’s
designed to give you the knowledge and recognition of various syntax and expres-
sions to allow you to work with Riemann. We will not be teaching you how to

Version: v1.0.4 (9364dd6) 67



Chapter A: An Introduction to Clojure and Functional Programming

develop in Clojure in this book.

A brief introduction to Clojure
Let’s step through the Clojure basic syntax and types. We’ll also show you a tool
called REPL that can help you test and build your Clojure snippets. REPL (short
for read–eval–print loop) is an interactive programming shell that takes single
expressions, evaluates them, and returns the results. It’s a great way to get to
know Clojure.

 NOTE If you’re from the Ruby world then REPL is just like irb. Or, in
Python, it’s like when you launch the python binary interactively.

We install REPL via a tool called Leiningen. Leiningen is an automation tool for
Clojure that helps you automate the build and management of Clojure projects.

Installing Leiningen
In order to install Leiningen we’ll need to have Java installed on the host. The
prerequisite Java packages we installed on Ubuntu and Red Hat for Reimann will
be sufficient for Leiningen too.
We’re going to download a Leiningen binary called lein to install it. Let’s down-
load that into a bin directory under our home directory.

Version: v1.0.4 (9364dd6) 68

http://leiningen.org/


Chapter A: An Introduction to Clojure and Functional Programming

Listing A.2: Getting lein

$ mkdir -p ~/bin
$ cd ~/bin
$ curl -o lein https://raw.githubusercontent.com/technomancy/
leiningen/stable/bin/lein
$ chmod a+x lein
$ export PATH=$PATH:$HOME/bin

Here we’ve created a new directory called ~/bin and changed into it. We’ve then
used the curl command to download the lein binary and the chmod command to
make it executable. Lastly, we’ve added our ~/bin directory to our path so that
we can find the lein binary.

 TIP The addition of the /bin directory assumes you’re in a Bash shell. It’s
also temporary to your current shell. You’d need to add the path to your .bashrc
or a similar setup for your shell.

Next we need to run lein to auto-install its supporting libraries.

Listing A.3: Auto-installing lein

$ lein
. . .

This will download Leiningen’s supporting Jar file.
Finally, we run REPL using the lein repl sub-command.

Version: v1.0.4 (9364dd6) 69



Chapter A: An Introduction to Clojure and Functional Programming

Listing A.4: Launching REPL

$ lein repl
. . .
user=>

This will download Clojure itself (in the form of its Jar file) and launch our inter-
active Clojure shell.

Clojure syntax and types
Let’s use this interactive shell to look at some of the syntax and functions we’ve
just learned about. We’ll start by opening our shell.

Listing A.5: The REPL shell

user=>

Now we try a simple expression.

Listing A.6: Our first Clojure value

user=> nil
nil

The nil expression is the simplest value in Clojure. It represents literally nothing.
We can also specify an integer value.

Version: v1.0.4 (9364dd6) 70



Chapter A: An Introduction to Clojure and Functional Programming

Listing A.7: Our first Clojure integer

user=> 1
1

Or a string.

Listing A.8: Our first Clojure string

user=> "hello Ms Event"
"hello Ms Event"

Or Boolean values.

Listing A.9: Our first Clojure Booleans

user=> true
true
user=> false
false

Clojure functions
While interesting, these values aren’t exciting on their own. To do some more
interesting things we can use Clojure functions. A function is structured like this:

Version: v1.0.4 (9364dd6) 71



Chapter A: An Introduction to Clojure and Functional Programming

Listing A.10: The Clojure function syntax

(function argument argument)

 TIP If you’re used to the Ruby or Python world, a function is broadly the
equivalent of a method.

Let’s look at a function in action by doing something with some values: adding
two integers together.

Listing A.11: Our first Clojure function

user=> (+ 1 1)
2

In this case we’ve used the + function and added 1 and 1 together to get 2.
But there’s something about this structure that might look familiar to you if you’ve
used other programming languages. Our function looks just like a list. This is
because it is! Our expression might add two numbers together, but it’s also a list
of three items in a valid list data structure.

 NOTE Technically it’s an s-expression.

This is a feature of Clojure called homoiconicity, sometimes described as: “code

Version: v1.0.4 (9364dd6) 72

https://en.wikipedia.org/wiki/List_(abstract_data_type)
http://en.wikipedia.org/wiki/S-expression
http://en.wikipedia.org/wiki/Homoiconicity


Chapter A: An Introduction to Clojure and Functional Programming

is data, data is code.” This concept is inherited from Clojure’s parent language,
Lisp.
Homoiconicity means that the program’s structure is similar to its syntax. In this
case Clojure programs are written in the form of lists. Hence you can gain in-
sight into the program’s internal workings by reading its code. This also makes
metaprogramming really easy because Clojure’s source code is a data structure
and the language can treat it like one.
Now let’s look more closely at the + function. Each function is a symbol. A symbol
is a bare string of characters, like + or inc. Symbols have short names and full
names. The short name is used to refer to it locally—for example, +. The full
name, or perhaps more accurately the fully qualified name, gives you a way to
refer to the symbol unambiguously from anywhere. The fully qualified name of
the + symbol is clojure.core/+. The clojure.core is the fundamental library of
the Clojure language. We refer to + in its fully qualified form here:

Listing A.12: The fully qualified + function

user=> (clojure.core/+ 1 1)
2

Symbols refer to other things; generally they point to values. Think about them as
a name or identifier that points to a concept: + is the name, “adding” is the concept.
When Clojure encounters a symbol it evaluates it by looking up its meaning. If it
can’t find a meaning it’ll generate an error message, for example:

Version: v1.0.4 (9364dd6) 73

http://en.wikipedia.org/wiki/Lisp_(programming_language)
http://en.wikipedia.org/wiki/Metaprogramming


Chapter A: An Introduction to Clojure and Functional Programming

Listing A.13: Unable to resolve symbol

user=> (bob 1 2)
CompilerException java.lang.RuntimeException: Unable to resolve
symbol: bob in this context, compiling:(NO_SOURCE_PATH:1:1)

Clojure also has a syntax for stopping that evaluation. This is called quoting, and
it is achieved by prefixing the expression with a quotation mark: '.

Listing A.14: Quoting a symbol

user=> '(+ 1 1)
(+ 1 1)

This returns the symbol itself without evaluating it. This is important because
often we want to do things, review things, or test things without evaluating.
For example, if we need to determine what type of thing something is in Clojure
we use the type function and quote the function like so:

Listing A.15: The type function

user=> (type '+)
clojure.lang.Symbol

Here we see that + is a Clojure language symbol.

Version: v1.0.4 (9364dd6) 74



Chapter A: An Introduction to Clojure and Functional Programming

Lists
Clojure also has a variety of data structures. Especially useful to us will be collec-
tions. Collections are groups of values, for example, a list or a map.
Let’s start by looking at lists. Lists are core to all Lisp-based languages (Lisp means
“LISt Processing”). As we discovered above, Clojure programs are essentially lists.
So we’re going to see a lot of them!
Lists have zero or more elements and are wrapped in parentheses.

Listing A.16: A Clojure list

user=> '(a b c)
(a b c)

Here we’ve created a list containing the elements a, b, and c. We’ve quoted it
because we don’t want it evaluated. If we didn’t quote it then evaluation would
fail because none of the elements, a, b, etc., are defined. Let’s see that now.

Listing A.17: An unquoted Clojure list

user=> (a b c)
CompilerException java.lang.RuntimeException: Unable to resolve
symbol: a in this context, compiling:(NO_SOURCE_PATH:1:1)

We can do a few neat things with lists, such as adding an element using the conj
function.

Version: v1.0.4 (9364dd6) 75



Chapter A: An Introduction to Clojure and Functional Programming

Listing A.18: Adding an element to a list

user=> (conj '(a b c) 'd)
(d a b c)

You can see we’ve added a new element, d, to the front of the list. Why the front?
Because a list is really a linked list and focuses on providing immediate access to
the first value in the list. Lists are most useful for small collections of elements
and when you need to read elements in a linear fashion.
We can also return values from a list using a variety of functions.

Listing A.19: Working with lists

user=> (first '(a b c))
a
user=> (second '(a b c))
b
user=> (nth '(a b c) 2)
c

Here we’ve pulled out the first element, second element, and using the nth func-
tion, the third element.
This last, nth, function shows us a multi-argument function. The first argument is
the list, '(a b c), and the second argument is the index value of the element we
want to return, here 2.

 TIP Like most programming languages Clojure starts counting from 0.

Version: v1.0.4 (9364dd6) 76

https://en.wikipedia.org/wiki/Linked_list


Chapter A: An Introduction to Clojure and Functional Programming

We can also create a list with the list function.

Listing A.20: Creating a list

user=> (list 1 2 3)
(1 2 3)

Vectors
Another collection available to us is the vector. Vectors are like lists but they are
optimized for random access to the elements by index. Vectors are created by
adding zero or more elements inside square brackets.

Listing A.21: A Clojure vector

user=> '[a b c]
[a b c]

Like lists, we again use conj to add to a vector.

Listing A.22: Adding an element to a vector

user=> (conj '[a b c] 'd)
[a b c d]

You’ll note the d element is added at the end because a vector isn’t focused on
sequential access like a list.
There are some other useful functions we can use on lists and vectors. For example,
to get the last element in a list or vector:

Version: v1.0.4 (9364dd6) 77



Chapter A: An Introduction to Clojure and Functional Programming

Listing A.23: Getting the last element in a vector

user=> (last '[a b c d])
d

Or count the elements:

Listing A.24: Counting elements in a vector

user=> (count '[a b c d])
4

Because vectors are designed to look up elements by index, we can also use them
directly as functions, for example:

Listing A.25: Using a vector as a function

user=> ([1 2 3] 1)
2

Here we’ve retrieved the value, 2, at index 1.
We can create a vector with the vector function or change another data structure
into a vector with the vec function.

Version: v1.0.4 (9364dd6) 78



Chapter A: An Introduction to Clojure and Functional Programming

Listing A.26: Creating or converting vectors

user=> (vector 1 2 3)
[1 2 3]
user=> (vec (list 1 2 3))
[1 2 3]

Sets
There’s a final collection related to lists and vectors called a set. Sets are unordered
collections of values, prefixed with # and wrapped in curly braces, { }. They are
most useful for collections of values where you want to check if a value or values
are present.

Listing A.27: A Clojure set

user=> '#{a b c}
#{a c b}

You’ll notice the set was returned in a different order. This is because sets are
focused on presence lookups so order doesn’t matter quite so much.
Like lists and vectors we use the conj function to add an element to a set.

Listing A.28: Adding to a set

user=> (conj '#{a b c} 'd)
#{a c b d}

Version: v1.0.4 (9364dd6) 79



Chapter A: An Introduction to Clojure and Functional Programming

Sets can never contain an element more than once, so adding an element that’s
already present does nothing. You can remove elements with the disj function.

Listing A.29: Removing an element from a set

user=> (disj '#{a b c d} 'd)
#{a c b}

The most common operation with a set is to check for the presence of a specific
value. For this we use the contains? function.

Listing A.30: Checking for a value inside a set

user=> (contains? '#{a b c} 'c)
true
user=> (contains? '#{a b c} 'd)
false

Like a vector, you can also use the set itself as a function. This returns the value
if it is present, or nil if it is not.

Listing A.31: Using the set as a function

user=> ('#{a b c} 'c)
c
user=> ('#{a b c} 'd)
nil

You can make a set out of any other collection with the set function.

Version: v1.0.4 (9364dd6) 80



Chapter A: An Introduction to Clojure and Functional Programming

Listing A.32: Making a set

user=> (set '[a b c])
#{a c b}

Here we’ve made a set out of a vector.

Maps
The last data structure we’re going to look at is the map. Maps are key/value pairs
enclosed in braces. You can think about them as being equivalent to a hash.

Listing A.33: A Clojure map

user=> {:a 1 :b 2}
{:a 1, :b 2}

Here we’ve defined a map with two key/value pairs: :a 1 and :b 2.
You’ll note each key is prefixed with a :. This denotes another type of Clojure
syntax: the keyword. A keyword is much like a symbol, but instead of referencing
another value it is merely a name or label. It’s highly useful in data structures like
maps to do lookups—you look up the keyword and return the value.
We can use the get function to retrieve a value.

Listing A.34: Getting a Clojure map value

(get {:a 1 :b 2} :a)
1

Version: v1.0.4 (9364dd6) 81



Chapter A: An Introduction to Clojure and Functional Programming

Here we’ve specified the keyword :a and asked Clojure if it is inside our map. It’s
returned the value in the key/value pair, 1.
If the key doesn’t exist in the map then Clojure returns nil.

Listing A.35: Getting a missing Clojure map value

user=> (get {:a 1 :b 2} :c)
nil

The get function can also take a default value to return instead of nil if the key
doesn’t exist in that map.

Listing A.36: Getting a default value from a map

user=> (get {:a 1 :b 2} :c :novalue)
:novalue

We can use the map itself as a function, as well.

Listing A.37: Using a map as a function

user=> ({:a 1 :b 2} :a)
1

And we can use keywords as functions to look themselves up in a map.

Version: v1.0.4 (9364dd6) 82



Chapter A: An Introduction to Clojure and Functional Programming

Listing A.38: Using a keyword as a function

user=> (:a {:a 1 :b 2})
1

To add a key/value pair to a map we use the assoc function.

Listing A.39: Using assoc to add a key/value

user=> (assoc {:a 1 :b 2} :c 3)
{:a 1, :b 2, :c 3}

If a key isn’t present then assoc adds it. If the key is present then assoc replaces
the value.

Listing A.40: Replacing a key/value with assoc

user=> (assoc {:a 1 :b 2} :b 3)
{:a 1, :b 3}

To remove a key we use the dissoc function.

Listing A.41: Removing a key/value with dissoc

user=> (dissoc {:a 1 :b 2} :b)
{:a 1}

 NOTE If you’ve come from the Ruby or Python world, the terms list, set,

Version: v1.0.4 (9364dd6) 83



Chapter A: An Introduction to Clojure and Functional Programming

vector, and map might be a little new. But the syntax probably looks familiar.
You can think about lists, vectors, and sets as being similar to arrays, and maps
being hashes.

Strings
We can also work with strings. Clojure lets you turn pretty much any value into
a string using the str function.

Listing A.42: The str function

user=> (str "holiday")
"holiday"

The str function turns anything specified into a string. We can also use it to
concatenate strings.

Listing A.43: Concatentating a string

user=> (str "james needs " 2 " holidays")
"james needs 2 holidays"

Creating our own functions
Up until now we’ve run functions as stand-alone expressions. For example, here’s
the inc function that increments arguments passed to it:

Version: v1.0.4 (9364dd6) 84



Chapter A: An Introduction to Clojure and Functional Programming

Listing A.44: The inc function again

user=> (inc 1)
2

This isn’t overly practical except to demonstrate how a function works. If we want
do more with Clojure we need to be able to define our own functions. To do this,
Clojure provides a function called fn. Let’s construct our first function.

Listing A.45: The fn function

user=> (fn [a] (+ a 1))

So what’s going on here? We’ve used the fn function to create a new function. The
fn function takes a vector as an argument. This vector contains any arguments
being passed to our function. Then we specify the actual action our function is
going to perform. In our case we’re mimicking the behavior of the inc function.
The function will take the value of a and add 1 to it.
If we run this code now nothing will happen because a is currently unbound—we
haven’t defined a value for it. Let’s run our function now.

Listing A.46: Running our first fn function

user=> ((fn [a] (+ a 1)) 2)
3

Here we’ve evaluated our function and passed in an argument of 2. This is assigned
to our a symbol and passed to the function. The function adds a, now set to 2, and
1 and returns the resulting value: 3.

Version: v1.0.4 (9364dd6) 85



Chapter A: An Introduction to Clojure and Functional Programming

There’s also a shorthand for writing functions that we’ll see occasionally in the
book.

Listing A.47: The fn function shortcut

user=> #(+ % 1)

This shorthand function is the equivalent of (fn [x] (+ x 1)) and we can call it
to see the result.

Listing A.48: Calling the fn function shortcut

user=> (#(+ % 1) 2)
3

Creating variables
But we’re still a step from a named function, and we’re missing an important piece:
how do we define our own variables to hold values? Clojure has a function called
def that allows us to do this.

Listing A.49: Creating a var

user=> (def smoker "joker")
#'user/smoker

The def statement does two things:

• It creates a new type of object called a var. Vars, like symbols, are references

Version: v1.0.4 (9364dd6) 86



Chapter A: An Introduction to Clojure and Functional Programming

to other values. You can see our new var #'user/smoker returned as output
of the def function.

• It binds a symbol to that var. Here the symbol smoker is bound to a var with
a value of the string joker.

When we evaluate a symbol pointing to a var it is replaced by the var’s value. But
because def also creates a symbol, we can refer to our var like that too.

Listing A.50: Evaluating a symbol

user=> user/smoker
"joker"
user=> smoker
"joker"

Where did this user/ come from? It’s a Clojure namespace. Namespaces are a
way Clojure organizes code and program structure. In this case the REPL creates
a namespace called user/ by default. Remember, we learned earlier that a symbol
has both a short name—for example, smoker—that can be used locally to refer to
it, and a full name. That full name, here user/smoker, would be used to refer to
this symbol from another namespace.
We’ll talk more about namespaces and use them to organize our Riemann config-
uration in other parts of this book. If you’d like to read more about them, there
is an excellent explanation in this post.
We can also use the type function to see the type of value the symbol references.

Listing A.51: Using the type function on the symbol

user=> (type smoker)
java.lang.String

Version: v1.0.4 (9364dd6) 87

http://www.braveclojure.com/organization/


Chapter A: An Introduction to Clojure and Functional Programming

Here we see that the value smoker resolves to is a string.

Creating named functions
Now, with the combination of def and fn, we can create our own named functions.

Listing A.52: Creating our first named function

user=> (def grow (fn [number] (* number 2)))
#'user/grow

Firstly, we’ve defined a var (and symbol) called grow. Inside that we’ve defined a
function. Our function takes a single argument, number, and passes that number to
the * function, the mathematical multiplication operator in Clojure, andmultiplies
it by 2.
Let’s call our function now.

Listing A.53: Calling our grow function

user=> (grow 10)
20

Here we’ve called the grow function and passed it a value of 10. The grow function
multiplies that value and returns the result: 20. Pretty awesome eh?
But the syntax is a little cumbersome. Thankfully Clojure offers a shortcut to
creating a var and binding it to a function called defn. Let’s rewrite our function
using this form.

Version: v1.0.4 (9364dd6) 88



Chapter A: An Introduction to Clojure and Functional Programming

Listing A.54: Using the defn form

user=> (defn grow [number] (* number 2))
#'user/grow

That’s a little neater and easier to read. Now how about we add a second argu-
ment? Let’s make both the number to be multiplied and the multiplier arguments.

Listing A.55: Adding a second argument

user=> (defn grow [number multiple] (* number multiple))
#'user/grow

Let’s call our grow function again.

Listing A.56: Calling our grow function again

user=> (grow 10)
ArityException Wrong number of args (1) passed to: user/grow
clojure.lang.AFn.throwArity (AFn.java:429)

Oops, not enough arguments! Let’s add the second argument.

Listing A.57: Calling grow with our second argument

user=> (grow 10 4)
40

We can also add a doc string to our function to help us articulate what it does.

Version: v1.0.4 (9364dd6) 89



Chapter A: An Introduction to Clojure and Functional Programming

Listing A.58: Adding a second argument

(defn grow
"Multiplies numbers - can specify the number and multiplier"
[number multiple]
(* number multiple)

)

We can access a function’s doc string using the doc function.

Listing A.59: Using the doc function

user=> (doc grow)
-------------------------
user/grow
([number multiple])
Multiplies numbers - can specify the number and multiplier

nil

The doc function tells us the full name of the function, the arguments it accepts,
and returns the docstring.
That’s the end of our introduction. We’ll see and learn more Clojure elsewhere in
the book.

Learning more Clojure
We recommend trying to get an understanding of the basics of Clojure to get the
most out of Riemann. If you’d like to start to learn a bit about Clojure, Kyle Kings-
bury’s excellent Clojure from the ground up series is a great place to start. This
section is much an abbreviated summary of that tutorial, and we can’t thank Kyle

Version: v1.0.4 (9364dd6) 90

https://aphyr.com/posts/301-clojure-from-the-ground-up-welcome


Chapter A: An Introduction to Clojure and Functional Programming

enough for writing it. A reading of his tutorial will greatly add to the knowledge
we’ve shared here. For the purposes of this book, we recommend at least a solid
reading of the first three posts in the series:

• The Welcome post.
• The post on Basic types.
• The post on Functions.

Also useful to writing good code is the Clojure Style Guide.

 TIP If you’re interested in learning a bit more about the basics of Clojure,
another good resource is Learn Clojure.

Version: v1.0.4 (9364dd6) 91

https://aphyr.com/posts/301-clojure-from-the-ground-up-welcome
https://aphyr.com/posts/302-clojure-from-the-ground-up-basic-types
https://aphyr.com/posts/303-clojure-from-the-ground-up-functions
https://github.com/bbatsov/clojure-style-guide
http://learn-clojure.com/


List of Figures

3.1 Event Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3.2 Metrics Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Connecting Riemann servers . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Email notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Sharded Riemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

92



Listings

3.1 Installing Java on Ubuntu . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Checking Java is installed on Ubuntu . . . . . . . . . . . . . . . . . . . 6
3.3 Fetching the Riemann DEB package . . . . . . . . . . . . . . . . . . . . 6
3.4 Installing the Riemann package on Ubuntu . . . . . . . . . . . . . . . . 6
3.5 Installing Java and prerequisites on RHEL . . . . . . . . . . . . . . . . 7
3.6 Checking Java is installed on Red Hat . . . . . . . . . . . . . . . . . . . 7
3.7 Fetching the Riemann RPM package . . . . . . . . . . . . . . . . . . . . 8
3.8 Installing the Riemann package on RHEL . . . . . . . . . . . . . . . . . 8
3.9 Starting and stopping Riemann . . . . . . . . . . . . . . . . . . . . . . . 9
3.10 Running Riemann interactively . . . . . . . . . . . . . . . . . . . . . . 10
3.11 Installing supporting tools prerequisites on Ubuntu . . . . . . . . . . 11
3.12 Installing supporting tools prerequisites on RHEL . . . . . . . . . . . 11
3.13 Installing Riemann’s supporting tools . . . . . . . . . . . . . . . . . . 12
3.14 New /etc/riemann/riemann.config configuration file . . . . . . . . . 14
3.15 Riemann logging stanza . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.16 The let form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.17 Exposing Riemann on all interfaces . . . . . . . . . . . . . . . . . . . 17
3.18 Changing the Riemann port . . . . . . . . . . . . . . . . . . . . . . . . 17
3.19 Connecting to the Riemann REPL server . . . . . . . . . . . . . . . . 18
3.20 SIGHUP from the Riemann REPL server . . . . . . . . . . . . . . . . . 18
3.21 Restarting Riemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.22 Example Riemann event . . . . . . . . . . . . . . . . . . . . . . . . . . 19

93



Listings

3.23 Child streams example . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.24 Example Apache Riemann event . . . . . . . . . . . . . . . . . . . . . 22
3.25 Example expired Apache Riemann event . . . . . . . . . . . . . . . . 22
3.26 More of our default riemann.config configuration file . . . . . . . . 23
3.27 Copying more keys into expired events . . . . . . . . . . . . . . . . . 23
3.28 Using the Riemann default function . . . . . . . . . . . . . . . . . . . 24
3.29 Logging to the Riemann log file . . . . . . . . . . . . . . . . . . . . . . 24
3.30 A Riemann log event . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.31 Adding a prefix to Riemann logs entries . . . . . . . . . . . . . . . . . 25
3.32 Limiting Riemann log entries . . . . . . . . . . . . . . . . . . . . . . . 25
3.33 A filtered Riemann log event . . . . . . . . . . . . . . . . . . . . . . . 26
3.34 The Riemann prn function . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.35 Reloading Riemann to enable our new configuration . . . . . . . . . 26
3.36 Riemann internal events . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.37 The riemann-health command . . . . . . . . . . . . . . . . . . . . . . . 28
3.38 The riemann-health –host option . . . . . . . . . . . . . . . . . . . . . 28
3.39 Our incoming Riemann data . . . . . . . . . . . . . . . . . . . . . . . . 29
3.40 A Riemann-health disk event . . . . . . . . . . . . . . . . . . . . . . . 29
3.41 Our first monitoring check . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.42 Our prefixed warning event . . . . . . . . . . . . . . . . . . . . . . . . 31
3.43 Using the where stream with a regular expression . . . . . . . . . . 32
3.44 Using the where stream with booleans . . . . . . . . . . . . . . . . . 32
3.45 The tagged-any stream . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.46 Using the where stream for complex matches . . . . . . . . . . . . . 33
3.47 Referring to an optional example field in Riemann . . . . . . . . . . 33
3.48 Referring to an optional field in Riemann . . . . . . . . . . . . . . . . 33
3.49 The optional type field in Riemann . . . . . . . . . . . . . . . . . . . . 34
3.50 Referring to an optional field in Riemann . . . . . . . . . . . . . . . . 34
3.51 Using the where stream with math . . . . . . . . . . . . . . . . . . . . 34
3.52 Using the where stream for a range query . . . . . . . . . . . . . . . 35
3.53 Updated Riemann configuration . . . . . . . . . . . . . . . . . . . . . 38

Version: v1.0.4 (9364dd6) 94



Listings

3.54 Requiring the Riemann client . . . . . . . . . . . . . . . . . . . . . . . 38
3.55 Added downstream binding to Riemann . . . . . . . . . . . . . . . . . 39
3.56 Riemann client forwarding configuration . . . . . . . . . . . . . . . . 40
3.57 The where filtering stream for forwards . . . . . . . . . . . . . . . . . 41
3.58 The downstream riemannmc server . . . . . . . . . . . . . . . . . . . 42
3.59 Restarting Riemann to enable forwarding . . . . . . . . . . . . . . . . 43
3.60 Riemann agg events on riemanna or riemannb . . . . . . . . . . . . . 43
3.61 Combined events from upstream and downstream . . . . . . . . . . 44
3.62 The downstream riemannmc server configuration . . . . . . . . . . . 46
3.63 Clojure namespace format . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.64 Creating the examplecom.etc namespace path . . . . . . . . . . . . . 47
3.65 Creating the email.clj file . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.66 Requiring the Riemann functions . . . . . . . . . . . . . . . . . . . . . 48
3.67 Referring functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.68 Configuring email notifications in Riemann . . . . . . . . . . . . . . 50
3.69 Configuring an SMTP server for Postal . . . . . . . . . . . . . . . . . 51
3.70 Adding our email function to Riemann . . . . . . . . . . . . . . . . . 51
3.71 Our expired Riemann event filter stream . . . . . . . . . . . . . . . . 52
3.72 The riemanna expired streams event . . . . . . . . . . . . . . . . . . . 53
3.73 Our throttled expired Riemann event filter . . . . . . . . . . . . . . . 54
3.74 The throttle stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.75 A rollup of our expired Riemann events . . . . . . . . . . . . . . . . . 55
3.76 Revisting our riemannmc configuration . . . . . . . . . . . . . . . . . 56
3.77 Adding a tap to our riemannmc index . . . . . . . . . . . . . . . . . . 57
3.78 Adding tests to our riemannmc configuration . . . . . . . . . . . . . 58
3.79 Running the Riemann tests . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.80 Download the Riemann syntax checker . . . . . . . . . . . . . . . . . 60
3.81 Build the Riemann syntax checker . . . . . . . . . . . . . . . . . . . . 60
3.82 Syntax check a Riemann configuration . . . . . . . . . . . . . . . . . 60
3.83 Configuring additional RAM . . . . . . . . . . . . . . . . . . . . . . . . 61
A.1 A declarative statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Version: v1.0.4 (9364dd6) 95



Listings

A.2 Getting lein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.3 Auto-installing lein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.4 Launching REPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.5 The REPL shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.6 Our first Clojure value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.7 Our first Clojure integer . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.8 Our first Clojure string . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.9 Our first Clojure Booleans . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.10 The Clojure function syntax . . . . . . . . . . . . . . . . . . . . . . . . 72
A.11 Our first Clojure function . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.12 The fully qualified + function . . . . . . . . . . . . . . . . . . . . . . 73
A.13 Unable to resolve symbol . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.14 Quoting a symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.15 The type function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.16 A Clojure list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.17 An unquoted Clojure list . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.18 Adding an element to a list . . . . . . . . . . . . . . . . . . . . . . . . 76
A.19 Working with lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.20 Creating a list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.21 A Clojure vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.22 Adding an element to a vector . . . . . . . . . . . . . . . . . . . . . . 77
A.23 Getting the last element in a vector . . . . . . . . . . . . . . . . . . . 78
A.24 Counting elements in a vector . . . . . . . . . . . . . . . . . . . . . . . 78
A.25 Using a vector as a function . . . . . . . . . . . . . . . . . . . . . . . . 78
A.26 Creating or converting vectors . . . . . . . . . . . . . . . . . . . . . . 79
A.27 A Clojure set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.28 Adding to a set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.29 Removing an element from a set . . . . . . . . . . . . . . . . . . . . . 80
A.30 Checking for a value inside a set . . . . . . . . . . . . . . . . . . . . . 80
A.31 Using the set as a function . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.32 Making a set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Version: v1.0.4 (9364dd6) 96



Listings

A.33 A Clojure map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.34 Getting a Clojure map value . . . . . . . . . . . . . . . . . . . . . . . . 81
A.35 Getting a missing Clojure map value . . . . . . . . . . . . . . . . . . . 82
A.36 Getting a default value from a map . . . . . . . . . . . . . . . . . . . 82
A.37 Using a map as a function . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.38 Using a keyword as a function . . . . . . . . . . . . . . . . . . . . . . 83
A.39 Using assoc to add a key/value . . . . . . . . . . . . . . . . . . . . . . 83
A.40 Replacing a key/value with assoc . . . . . . . . . . . . . . . . . . . . 83
A.41 Removing a key/value with dissoc . . . . . . . . . . . . . . . . . . . . 83
A.42 The str function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.43 Concatentating a string . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.44 The inc function again . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.45 The fn function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.46 Running our first fn function . . . . . . . . . . . . . . . . . . . . . . . 85
A.47 The fn function shortcut . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.48 Calling the fn function shortcut . . . . . . . . . . . . . . . . . . . . . . 86
A.49 Creating a var . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.50 Evaluating a symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.51 Using the type function on the symbol . . . . . . . . . . . . . . . . . 87
A.52 Creating our first named function . . . . . . . . . . . . . . . . . . . . 88
A.53 Calling our grow function . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.54 Using the defn form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.55 Adding a second argument . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.56 Calling our grow function again . . . . . . . . . . . . . . . . . . . . . 89
A.57 Calling grow with our second argument . . . . . . . . . . . . . . . . 89
A.58 Adding a second argument . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.59 Using the doc function . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Version: v1.0.4 (9364dd6) 97



Index
Chef, 8
Clojure, 3, 12, 47, 66

*, 88
+, 72
assoc, 83
conj, 75, 77, 79
contains?, 80
count, 78
def, 50, 86
defn, 88
deftest, 57
disj, 80
dissoc, 83
doc, 90
first, 76
fn, 85
get, 81
hash, 81
homoiconicity, 73
last, 77
Leiningen, 68
list, 72, 75
map, 81

namespaces, 48, 87
ns, 48
nth, 76
quoting, 74
second, 76
set, 79, 80
str, 84
style, 91
symbols, 73
type, 87
types, 70
var, 50, 87
vec, 78
vector, 77

Configuration management, 5, 6, 8, 14,
67

deftest, 57
Docker, 8

Events, 19

Functional programming, 66

Ganglia, 64

98



Index

Git, 60
Grafana, 3
Graphite, 3

index, 21

Java, 3
JVM, 3

Leiningen, 60, 68

Munin, 64

PagerDuty, 55
Postal, 50
Puppet, 8

Reimann
REPL, 68

REPL, 68
Riemann, 2, 4

/var/log/riemann/riemann.log, 24
AGGRESSIVE_OPTS, 61
async-queue, 37
asynchronous streams, 37
C client, 28
client, 37
Clojure DSL, 12
configuration, 9, 13
connecting servers, 35
dashboard, 12
default, 24, 45
email, 47
event, 19

expired stream, 52
EXTRA_JAVA_OPTS, 61
failover, 62
filtering streams, 32
forwarding events, 37
high availability, 62
HUP, 18
index, 21, 24, 45
installation, 5
JMX, 63
Leiningen, 68
logging, 10, 14, 15, 26
mailer, 47
namespacing, 48
network, 15
ns, 48
PagerDuty, 55
Performance, 61
ports, 15
Postal, 50
prn, 26
REPL, 17
require, 38
rollup, 54
scaling, 62
SIGHUP, 18
Slack, 55
SSL, 17
Streams, 21
streams, 24
syntax checking, 60

Version: v1.0.4 (9364dd6) 99



Index

tagged, 32
tagged-all, 32
tagged-any, 32
tap, 57
testing, 57
throttle, 54
TLS, 17
tools, 11
TTL, 21
where, 32, 41, 52

sendmail, 50
Slack, 55
Streams, 21

Throttle, 54

Vagrant, 8

Websockets, 15

Version: v1.0.4 (9364dd6) 100



Thanks! I hope you enjoyed the book.

© Copyright 2018 - James Turnbull <james@lovedthanlost.net>

mailto:james+aom@lovedthanlost.net

	Managing events and metrics with Riemann
	Introducing Riemann
	Riemann architecture and implementation
	Installing Riemann

	Configuring Riemann
	Learning some Clojure
	Riemann's base configuration
	Events, streams, and the index
	Configuring events, streams, and the index
	Sending our first event to Riemann
	Creating our first Riemann monitoring check
	An interlude into Riemann filtering

	Connecting Riemann servers
	Configuring the upstream Riemann servers
	Configuring the downstream Riemann server
	Enabling the send of our Riemann events downstream

	Alerting on the upstream Riemann servers
	Throttling Riemann events
	Rolling up Riemann events
	Alternatives to email notifications

	Testing your Riemann configuration
	Validating Riemann configuration
	Performance, scaling, and making Riemann highly available
	Alternatives to Riemann
	Summary

	An Introduction to Clojure and Functional Programming
	A brief introduction to Clojure
	Installing Leiningen
	Clojure syntax and types
	Clojure functions
	Lists
	Vectors
	Sets
	Maps
	Strings
	Creating our own functions
	Creating variables
	Creating named functions

	Learning more Clojure

	List of Figures
	List of Listings
	Index

